
A clinical drug library screen
identifies astemizole as an
antimalarial agent
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& David J Sullivan, Jr2,4

The high cost and protracted time line of new drug discovery
are major roadblocks to creating therapies for neglected
diseases. To accelerate drug discovery we created a library
of 2,687 existing drugs and screened for inhibitors of
the human malaria parasite Plasmodium falciparum. The
antihistamine astemizole and its principal human metabolite
are promising new inhibitors of chloroquine-sensitive and
multidrug-resistant parasites, and they show efficacy in two
mouse models of malaria.

Only recently has a systematic high-throughput approach been used to
screen existing drugs for previously unknown activities, and these
screens have focused primarily on diseases with relatively low pre-
valence in the developing world1. Of the existing drug libraries
reported, the largest contains less than 25% of the 3,400 drugs
approved by the US Food and Drug Administration (FDA) and less
than 10% of the approximately 11,500 drugs ever used in medicine
(Supplementary Fig. 1 online). We assembled a library of 1,937 FDA-
approved drugs and 750 drugs that were either approved for use abroad
or undergoing phase 2 clinical trials, and we screened this collection,
called the Johns Hopkins Clinical Compound Library (JHCCL), for
inhibition of P. falciparum growth (Supplementary Methods online).
A preliminary screen using a concentration of 10 mM revealed 189
existing drugs, distributed across many drug classes, that resulted in
450% inhibition (Fig. 1a and Supplementary Fig. 2 online). After
eliminating topical drugs, known antimalarials, cytotoxic drugs and
compounds previously reported to inhibit the malaria parasite, we
determined half-maximal inhibitory concentration (IC50) values for the
87 remaining drugs (Supplementary Table 1 online). Some inhibitors,
such as pyrvinium pamoate, have no absorption with oral dosing.
Other weak P. falciparum inhibitors that we identified, such as
paroxetine, could be improved upon by screening related analogs that
have not been developed to phase 2 drug trials as antidepressants. The
unique ability of individual drugs within a class to inhibit P. falciparum
supports building a comprehensive library of existing drugs rather than
selecting representative members of each mechanistic class.

One of the more promising drugs identified is the nonsedating anti-
histamine astemizole (1; Fig. 1b), which inhibits (at submicromolar

concentrations) the proliferation of three P. falciparum parasite strains

that differ in chloroquine sensitivity (Table 1). After oral ingestion in

humans, astemizole is rapidly converted primarily to desmethylaste-

mizole (2), which is ten-fold more abundant in plasma than astemizole

and has a half-life of 7–9 d (ref. 2). Notably, desmethylastemizole had

an IC50 of approximately 100 nM and was 2- to 12-fold more potent

than astemizole in inhibiting P. falciparum, whereas the minor meta-

bolite norastemizole (3) weakly inhibited the parasite. Astemizole and

desmethylastemizole showed only an additive effect in combination

with chloroquine (4), quinidine (5) and artemisinin (6) on the 3D7

and Dd2 P. falciparum strains (data not shown). During intraerythro-

cytic infection, P. falciparum parasites crystallize heme released from

hemoglobin catabolism within the food vacuole, and quinoline anti-

malarials such as chloroquine inhibit this reaction3. Astemizole and

desmethylastemizole (like the quinoline antimalarials) inhibit heme

crystallization, concentrate within the P. falciparum food vacuole and

co-purify with hemozoin in chloroquine-sensitive and multidrug-

resistant parasites (Supplementary Fig. 3 online).
To determine whether astemizole has in vivo antimalarial activity, we

tested it in two mouse models using the 4-d parasite suppression test.
We used intraperitoneal dosing of desmethylastemizole in mice because
in humans this is the principal active metabolite, and the parent com-
pound has an oral bioavailability of 95% (ref. 2). Vehicle-treated mice
that were infected with the lethal, chloroquine-sensitive P. vinckei strain
developed parasitemias of approximately 64% on day 5 (Fig. 1c). In
contrast, mice treated with astemizole at 30 mg m–2 d–1 or desmethy-
lastemizole at 15 mg m–2 d–1 had an 80% or 81% reduction in para-
sitemia, respectively. Mice infected with chloroquine-resistant P. yoelii,
then treated with astemizole or desmethylastemizole at 15 mg m–2 d–1,
showed a 44% or 40% reduction in parasitemia, respectively (Fig. 1d).
Recrudescence occurred for both strains if we stopped treatment after
4 d at these doses, although high doses of astemizole (300 mg m–2)
delivered per os for 4 d cured infection. Doses as high as 18.6 mg m–2

have been used in humans to treat seasonal allergic rhinitis4.
Astemizole was introduced in 1983 under the brand name Hisma-

nal as a nonsedating selective H1-histamine receptor antagonist for
treating allergic rhinitis and was sold in 106 countries and also over
the counter2. The use patent for astemizole has expired. Although
astemizole was voluntarily withdrawn in 1999 from the United States
and Europe after decreased sales due to warnings about its safety and
to the availability of antihistamines with fewer side effects5, it is
currently sold in generic form in over 30 countries, including
Cambodia, Thailand and Vietnam, which are malaria endemic
(Dr. Reddy’s Laboratories, personal communication). Astemizole
and desmethylastemizole potently inhibit the ether-a-gogo (HERG)
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potassium channel at nanomolar concentrations6. Life-threatening
cardiac arrhythmias can occur after astemizole overdose or when it
is taken with drugs that block its metabolism via cytochrome P450
3A5 (CYP 3A4)7. Surveillance data from 17 countries over a decade
revealed one cardiac rate or rhythm disorder per 8 million doses of
astemizole and less than one cardiac fatality per 100 million doses8.
Considerations relating to potential astemizole side effects in the
treatment of malaria include the following: (i) antimalarial use is
likely to be acute, in contrast to chronic administration as an
antihistamine; (ii) malaria patients in resource-poor settings may be
less likely to take interacting medications than were patients treated
with astemizole in the past; and (iii) established quinoline antimalar-
ials that less potently inhibit the HERG channel also have known
cardiotoxicity9. Hundreds of astemizole analogs have been synthe-
sized, and re-examination of this pharmacophore class may improve
antimalarial activity and reduce HERG-related and other side effects10.

Given the economic challenges of de novo drug development for
neglected diseases, screening existing drugs for new activities may be
helpful. Even though many leads lack the potency to immediately
enter the clinic or have unacceptable toxicity, the pharmacophore we
have identified is a starting point for further development. Currently,
the JHCCL is undergoing expansion to include every available drug
ever used in the clinic via phase 2 clinical trials or approval by the FDA
or its foreign counterparts. When complete, the JHCCL will be

available to any researcher interested in screening for existing drugs
that may be useful as economically viable new therapies for diseases of
the developing world.

Note: Supplementary information is available on the Nature Chemical Biology website.
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Figure 1 Identification of astemizole as an antimalarial agent by screening a library of existing drugs. (a) Screening

results for 2,687 existing drugs in the JHCCL organized by therapeutic indication as listed in the Merck Index. We

incubated drugs at 10 mM final concentration; numeric guides to drug categories are available in Supplementary

Figure 1. (b) Chemical structure of astemizole. (c,d) Astemizole and desmethylastemizole reduce parasitemias of

mice infected with (c) chloroquine-sensitive P. vinckei (control n ¼ 9; astemizole 30 mg m–2 n ¼ 9, P ¼ 0.00012;

desmethylastemizole 15 mg m–2 n ¼ 10, P ¼ 0.00011; desmethylastemizole 30 mg m–2 n ¼ 9, P ¼ 4.8 � 10–5)

and (d) chloroquine-resistant P. yoelii (control n ¼ 9; astemizole 15 mg m–2 n ¼ 10, P ¼ 0.085; astemizole

30 mg m–2 n ¼ 9, P ¼ 0.017; desmethylastemizole 15 mg m–2 n ¼ 8, P ¼ 0.0002). Data are presented as

mean parasitemia ± s.e.m.

Table 1 Astemizole inhibition of three P. falciparum strains of

different chloroquine sensitivity

Plasmodium

falciparum strain

Astemizole

IC50 (nM)

Norastemizole

IC50 (nM)

Desmethylastemizole

IC50 (nM)

Chloroquine

IC50 (nM)

3D7 227 ± 6.4 4,477 ± 15 117 ± 1.4 31.8 ± 3.5

Dd2 457 ± 12.3 3,590 ± 16 106.2 ± 10.3 79.3 ± 6.8

ItG 734 ± 2.2 2,230 ± 934 56.8 ± 27 107.3 ± 13.8
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SUPPLEMENTARY FIGURE 1.  Comparison of The Johns Hopkins Clinical Compound 
Library with other libraries of existing drugs.  (a)  There are approximately 11,500 existing 
drugs known to medicine, as indicated by FDA approval or the presence of a US Adopted Name, 
an International Non-proprietary Name, a Japanese Adopted Name, a British Adopted Name, or 
other national registry designation 1.  These drug names were entered into a database and cross-
referenced with library content lists.  (b)  A list of FDA-approved drugs was obtained by 
Freedom of Information Act requests and cross-referenced as above. 
 
1. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and 

computational approaches to estimate solubility and permeability in drug discovery and 
development settings. Adv Drug Deliv Rev 46, 3-26 (2001). 
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SUPPLEMENTARY MATERIALS:  Guide to numeric indications in manuscript Figure 1 
 
1:  Antacid 
2:  Antianginal 
3:  Anticoagulant 
4:  Antiglaucoma 
5:  Antimigraine 
6:  Antiparkinsonian, antiprotozoal, respectively 
7:  Antirheumatic 
8:  Antithrombotic, antitussive, antiulcerative, respectively 
9:  Anxiolytic, bone resorption inhibitor, respectively 
10:  Cardiotonic, choleretic, cholinergic, decongestant, respectively 
11:  Expectorant 
12:  Hemostatic, immunosuppressant, respectively 
13:  Mydriatic 
14:  Pituitary, plasma volume expander, progestogen, sedative, steroid, respectively 
15:  Thyroid, tocolytic, vasodilator, respectively.   
 
The miscellaneous category includes abortifacient, alcohol deterrent, anorexic, antiamebic, 
anticholelithogenic, antidiarrheal, antiflatulent, antmethemoglobinemic, antiobesity, 
antiurolithic, capillary protectant, contraceptive, ectoparasiticide, erectile dysfunction, 
gastroprokinetic, hemantic, hepatic protectant, immunomodulator, insecticide, mucolytic, 
oxytocic, prostaglandin, respiratory stimulant, sialagogue, surfactant, uricosuric, urologic, and 
vaccine, respectively. 



SUPPLEMENTARY FIGURE 2.  Selected screening results from drug classes of interest.  
Drugs were incubated at a 10 μM final concentration with 3D7 P. falciparum for 96 h; 
antihistamines (a), antifungals (b), antipsychotics (c), antihypertensives (d), antidepressants (e). 
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METHODS 

Library construction.  32,000 FDA drug approvals from 1938-2003 obtained by U.S. Freedom 

of Information Act requests were condensed to 3,400 unique drug formulations.  1,937 FDA 

approved drugs and 750 drugs that entered phase II clinical trials or are used abroad were 

purchased from Sigma, Spectrum Chemicals, MicroSource Discovery, MP Biomedicals, The 

Johns Hopkins Hospital pharmacy, Biomol, and Tocris.  10 mM stock solutions were made using 

DMSO, water, or ethanol as solvents.  Drugs were arrayed in 96-well plates and screened at a 

final concentration of 10 µM.   

Parasite culture and screening. Synchronized ring stage parasites from chloroquine-sensitive 

3D7 or multidrug resistant Dd2 or ItG were cultured in RPMI 1640 medium with 10% human 

serum and incubated for either 48 or 96 h in the presence of drug and [3H]-hypoxanthine1, 2.  A 

96 well plate with 0.2 mL of culture material per well at 0.2% parasitemia and 2-4% hematocrit, 

gives a radioactive incorporation signal of approximately 10,000 cpm at 48 h and 20,000 cpm at 

96 h with background counts less than 500 cpm.  Screening experiments were performed in 

duplicate and percent inhibition is reported as the average of two experiments. 

Heme crystallization assays.  Heme crystal was synthesized as previously described3.  For high-

throughput screening 2.5 nmol of heme crystal was used to seed a crystal extension reaction with 

50 µM heme in 0.1 M ammonium acetate, pH 4.8 in a 0.1 mL half area 96 well plate, and 

incubated at 37°C for 16 h.  This assay relies on the differential solubility of free versus 

crystalline heme in 0.15 M sodium bicarbonate to quantify the amount of crystal extension 3.  

Compounds that showed 50% inhibition at 50 µM in this assay were selected for further 

characterization of heme crystallization as previously described3.  For pH profile experiments the 

same buffers were used as previously3.  IC50 values for heme crystallization and parasite 



proliferation assays were determined using four-parameter logarithmic analysis with GraphPad 

Prism and are presented as mean ± s.e.m. for triplicate experiments. 

Co-purification of [3H]-astemizole with heme crystals or hemozoin.  [3H]-astemizole (27 

Ci/mmol) was purchased from Vitrax (Placentia, CA) and various amounts were incubated in the 

heme crystal extension assay in triplicate with a 5 nmol heme crystal seed and 50 µM heme 

substrate in 0.5 mL 0.1 M ammonium acetate, pH 4.8 for 16 h at 37°C.  The insoluble heme 

crystal produced was centrifuged at 15,000 × g for 10 min, resuspended by sonication in 0.1 mL 

50 mM Tris HCl, pH 8.0, placed on top of 1 mL of 1.7 M sucrose, 50 mM Tris HCl, pH 8.0, and 

centrifuged at 200,000 × g for 15 min4.  The heme crystal pellet was then decrystallized with 50 

mM NaOH, 2% SDS and the radioactivity was quantified using a scintillation counter.  For 

parasite hemozoin copurification experiments, duplicate 12 mL 3D7 or Dd2 cultures at 5% 

parasitemia and synchronized at ring stages were incubated with 1.5 µCi astemizole for 20 h.  At 

the trophozoite stage erythrocytes were harvested, washed once, and hemozoin was extracted by 

hypotonic lysis and purified as described above4. 

Animal experiments.  All animal experiments were performed on a protocol approved by The 

Johns Hopkins Animal Care and Use Committee in accordance with institutional standards.  

Male 5-6 week old 25 ± 2 g C57/BL6 mice were purchased from the National Cancer Institute.  

The P. vinckei Rhodain strain was obtained from ATCC; the P. yoelii 17X lethal strain was the 

gift of N. Kumar (JHMRI).  Stock solutions of astemizole tartrate or acetate were used.  Mice 

were given astemizole or equivalent volume of vehicle intraperitoneal or per os. 2 h post 

infection with 1 × 108 parasites intraperitoneal on day 0, and once daily for the indicated length 

of time5.  Blood was taken from the tail vein on day five.  Parasitemias were determined in a 

blinded fashion by counting four fields of approximately 200 erythrocytes per field, and P-values 



comparing drug treated with control animals were determined using the two-tailed Student’s T-

test.  Data are presented as mean parasitemia ± s.e.m.  Mice that survived for 30 days post 

infection with complete disappearance of parasitemia and no recrudescence within the next 30 

days were considered cured. Previous literature reports establish the minimum effective dose of 

chloroquine in murine P. vinckei as 7.5 mg/m2/day and 150 mg/m2/day in P. yoelii6. 
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