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Research Article

High-Content Phenotypic Profiling of Drug Response
Signatures across Distinct Cancer Cells

Peter D. Caie1, Rebecca E. Walls2, Alexandra Ingleston-Orme1, Sandeep Daya1,
Tom Houslay1, Rob Eagle3, Mark E. Roberts4, and Neil O. Carragher1

Abstract
The application of high-content imaging in conjunction with multivariate clustering techniques has recently

shown value in the confirmation of cellular activity and further characterization of drug mode of action
following pharmacologic perturbation. However, such practical examples of phenotypic profiling of drug
response published to date have largely been restricted to cell lines and phenotypic response markers that
are amenable to basic cellular imaging. As such, these approaches preclude the analysis of both complex
heterogeneous phenotypic responses and subtle changes in cell morphology across physiologically relevant
cell panels. Here, we describe the application of a cell-based assay and custom designed image analysis algo-
rithms designed to monitor morphologic phenotypic response in detail across distinct cancer cell types. We
further describe the integration of these methods with automated data analysis workflows incorporating
principal component analysis, Kohonen neural networking, and kNN classification to enable rapid and ro-
bust interrogation of such data sets. We show the utility of these approaches by providing novel insight into
pharmacologic response across four cancer cell types, Ovcar3, MiaPaCa2, and MCF7 cells wild-type and mu-
tant for p53. These methods have the potential to drive the development of a new generation of novel ther-
apeutic classes encompassing pharmacologic compositions or polypharmacology in appropriate disease
context. Mol Cancer Ther; 9(6); 1913–26. ©2010 AACR.

Introduction

High throughput target-directed drug discovery has
been the research paradigm favored by the pharmaceuti-
cal and biotechnology sectors over the last two decades.
Despite the increased identification of putative therapeu-
tic targets in the post-genomics era, widespread adoption
of target-directed drug discovery has been accompanied
by a steady decline in the approval of drugs against new
targets and a significant increase in the attrition of candi-
date drugs during preclinical and clinical development as
a result of toxicity and poor efficacy response (1, 2). Target-
directed screening has encouraged the application of
simplistic biochemical or engineered cellular assays.
Although these approaches are amenable to high-
throughput screening and have resulted in the discovery

of potent and highly selective agonists and antagonists,
they provide limited information on how therapeutics
influence complex physiologic systems. Such limita-
tions are a contributing factor to high attrition rates at
later stages in the drug development process.
Advances in automated high-content imaging and

image analysis methods offer an alternative to the tradi-
tional target-directed screening approach (3–5). Applica-
tion of imaging technologies to profile the phenotypic
response to molecular or pharmacologic perturbation at
cellular or tissue levels enables the study of therapeutic
response irrespective of putative target activity (6, 7).
Recent studies have used high-content cellular assays
to show the value of phenotypic profiling to first confirm
cellular activity and second, in conjunction with multi-
variate clustering techniques, to elucidate mechanism
of action (MOA) in which drug mode of action or pri-
mary targets are unknown (8–10).
Acquired drug resistance and intrinsic heterogeneity

among patients, tumor sites, and stage of disease repre-
sent significant challenges to the successful treatment of
cancer with targeted pharmacologic agents (11–13). To
advance the discovery and development of effective anti-
tumor agents, it will be necessary to recapitulate tumor
heterogeneity into early drug discovery. The phenotypic
analysis of pharmacologic response across panels of distinct
cancer cell lines that act as surrogates for heterogeneous
patient populations or distinct cancer phenotypes may as-
sist the development of therapeutic or pharmaceutical
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compositions targeting redundant tumor resistance
mechanisms or distinct genetic and epigenetic traits
(14–16). To date practical examples of high-content pheno-
typic profiling have largely been restricted to cell lines and
phenotypic response markers, including exogenously ex-
pressed proteins, which are amenable to predefined image
analysis solutions (8, 17, 18). Most high-content assays
and associated image analysis algorithms are manually
optimized for a specific cell line or use a limited parameter
set restricted to generic features independent of distinct
cellular morphology. These approaches preclude the
detailed analysis of complex heterogeneous responses
or subtle changes in cell morphology induced by selective
pharmacologic agents across physiologically relevant
cell panels.
In this report, we describe the development and appli-

cation of a multiparametric high-content cell-based assay
and bespoke custom-designed, image analysis algo-
rithms to enable detailed monitoring of changes to cyto-
skeletal, nuclear, and cellular morphologies across
heterogeneous cancer cell types. A significant bottleneck
in the analysis of multiparametric high-content phe-
notypic assays is data processing, including quality vali-
dation, normalization, and secondary multivariate
statistical analysis (19). We describe the application
of three novel multiparametric high-content analysis
methods integrated into an automated data analysis
workflow: Mahalanobis hit stratification to identify
active compound and doses as determined by the multi-
parametric phenotypic response measurements,
Kohonen neural network analysis to monitor multi-
parametric phenotypic response across dose response
and cell types, and KNN classification to rank compound
similarity and predict MOA as determined by a multi-
parametric image analysis readout. These methods enable
the rapid interrogation of complex high-content pheno-
typic response data across multiple cell lines within the
time frame required by the drug-screening cascade. We
show the utility of these approaches by profiling the phe-
notypic response of four distinct cancer cell lines following
perturbation with a small-molecule compound library.
Our data and analysis methods provide novel insight into
pharmacologic response across the following four cancer
cell lines representing distinct tissue origin and p53 muta-
tion status: Ovcar3 (ovarian), MiaPaCa2 (pancreatic), and
MCF7 cells wild-type and mutant for p53 (breast).

Materials and Methods

Cell culture
The cell lines MCF7-wt (breast cancer expressing wild-

type p53), MCF7-p53 (transfected dominant-negative
truncated p53 mutant gene), MiaPaCa2 (pancreatic
cancer), and Ovcar3 (ovarian cancer) were subcultured
in the following media preparations: MCF7-wt and
MCF7-p53 with RPMI 1640, 10% fetal bovine serum,
1% GlutaMAX (200 mmol/L), and 900 μg/mL G418;

MiaPaCa2 with DMEM, 10% fetal bovine serum, and 1%
GlutaMAX (200 mmol/L); and Ovcar3 with RPMI 1640,
10% fetal bovine serum, and 1% GlutaMAX (200 mmol/L).
All media and supplements were supplied by Sigma. All
cells were maintained at 37°C, 5% CO2, and 100% hu-
midity. For high-content assays, cells were resuspended
in Accutase (Sigma) and plated on collagen-coated black
96-well clear bottom plates (Becton Dickinson) using a
WellMate-fine bore (Matrix) at 5,000 cells per well in
95 μL media, with the exception of Ovcar3, which were
plated at 12,000 cells per well. These plates were subse-
quently cultured at 37°C, 5% CO2, and 100% humidity for
24 hours before compoundaddition.All cell lineswere orig-
inally obtained from theAmerican TypeCulture Collection.
MCF7-wt cells were genetically engineered to express a
dominant-negative, transactivation-deficient p53 mutant
and stable expression clones were derived and subcultured
in antibiotic (900 μg/mL G418) selection media. All cell
lines were subsequently authenticated as representing
original parental derivatives through barcode sequencing
of conserved DNA segments and comparison with the
American Type Culture Collection DNA profiles. All cell
line DNA sequencing was done during 2009 by LGC Ltd.
using standardized ABI3730xl sequencing platform.

Compound treatment
All compounds were prepared and titrated as an eight-

point half-log dose response in a 96-well microtiter plate
in 100% DMSO at 1,000× final drug concentration.
Highest concentrations for each compound were select-
ed from previously published data indicating activity in
cell-based assays. Compound dilutions were prepared
using a Tecan-automated dispensing system. Using a
Biomek Fx–automated dispensing system, 5 μL from
the compound dilution plate were dispensed into the in-
termediate plate containing 250 μL of cell culture media
and mixed before transfer of 5 μL to each cell plate. Cell
plates were incubated with the compound and 0.1%
DMSO control at 37°C, 5% CO2, and 100% humidity for
24 and 48 hours.

Kinetic imaging
Kinetic profiling of compound responses across cell

types was done using the Cell-IQ instrument (Chip-Man
Technologies Ltd). The Cell-IQ represents a fully inte-
grated incubator, phase-contrast image acquisition, and
artificial intelligent solution for kinetic profiling pheno-
typic response following chemical perturbation. Cells
were seeded at 7.5 × 103 cells per well in 48-multiwell
plates (Nunclon) for 24 hours before compound addition.
Three regions of interest per well were then imaged by the
Cell-IQ every 20 minutes over a 120-hour period. Supple-
mentary data presented represents a consistent example
from one field of view for each compound treatment.

Immunocytochemistry
All immunostaining procedures were done at room

temperature in 96-well plates. All volumes are 100 μL
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unless otherwise stated. Cells were fixed following direct
addition of 100 μL 8% paraformaldehyde in PBS to cells
(final concentration, 4%) and were incubated for 20 min-
utes. Cells were washed three times in PBS and incubated
in blocking buffer (PBS containing 1.1% bovine serum al-
bumin, and 0.2% Triton X100) for 30 minutes. Primary
antibody solution diluted in blocking buffer (1:500;
mouse anti–β-tubulin IgG1, Sigma T5293) was added
at 40 μL per well and incubated for 1 hour. Cells
were washed three times with blocking buffer and incu-
bated with blocking buffer for 30 minutes. Secondary
antibody solution of (40 μL) Alexa Fluor 488 donkey
anti-mouse IgG (H+L; Molecular probes A21202; dilut-
ed at 1:500), Phalloidin conjugated to Alexa Fluor
568 (Molecular probes A12380; diluted 1:500), and 4′,6-
diamidino-2-phenylindole (DAPI; Sigma D8417) diluted
at 1:250 in blocking buffer was incubated with cells
for 45 minutes in the dark. Cells were washed three
times with PBS. Deep red HCS cell mask (Molecular
probes, H34560) diluted at 1:120,000 was added
and incubated for 10 minutes. Cell were washed twice
with PBS. Plates were sealed with black plate sealers
before imaging.

Fluorescent image acquisition and image analysis
All imageswere acquired on the automated ImageXpress

5000A high-content imaging platform (Molecular De-
vices) using a ×20 PanFluor ELWD Ph1 DM objective
and a 16-bit camera binning resolution of 1. Four separate
fields of view per well were acquired using laser-based
autofocus parameters optimized for cell plates and cell
type. Image analysis was done using custom-designed
analysis algorithms created using Definiens Cellenger
cognition network software. Images were processed for
analysis as follows.
Step 1: Quality control check. Using expected values for

both mean and SD of intensities for the DAPI and actin
layers and the mean intensity of the cell mask layer, an
aggregated score was created. This score must be above
a designated threshold for the image to be of sufficient
quality to proceed. This process was run automatically
to ensure that each image was of acceptable quality to
enable accurate cell segmentation.
Step 2: Nuclear segmentation. A combination of pixel

contrast and intensity values in the DAPI channel is
used to find nuclear area. Reshaping methods based
on iterative setting of shape and intensity metrics on
the DAPI channel is implemented to separate discrete
nuclei and accurately segment across a range of diverse
nuclear phenotypes from control and compound per-
turbed cell lines.
Step 3: Cell assignment and cytoplasmic segmentation.

Definiens works on an object-based method, and so a
higher object level, based on cell mask and phalloidin-
associated parameters is created above the “nuclei level”
to allocate nuclei to their respective cells using the distance
watershed technique. Cell segmentation was achieved by
defining regions of interest above the background and

calculating a log score of the product of the three non-
DAPI channels anddisregarding the areas below adefined
threshold.
Step 4: Subpopulation classification. Cells are subclassi-

fied as “other” or “round,” depending on brightness le-
vels and shape metrics. A manual shape metric threshold
was set to ensure that other cells were not elliptical or cir-
cular in morphology. A customized feature within Defin-
iens is used to determine cells that have an elongated and
irregular cytoskeletal morphology, through dividing the
“shape index” of an object by its “density.” Shape index
is defined within Definiens as an object's border length
divided by four times the square root of its area (indicat-
ing “smoothness of border”) and “density” is defined as
the number of pixels forming the image object divided by
its approximated radius based on the covariance matrix
(“spatial distribution of the pixels of an image object”). It
follows that for cells containing “pseudopods,” there
should be a lower density due to the larger spatial spread
of pixels and a higher shape index as the border should
be more ragged due to the presence of pseudopod pro-
trusions. Dividing shape index by density should there-
fore give a higher figure for such cells. Shape index
and density are subsequently determined for both cell
mask and phalloidin staining, which enables a more ro-
bust detection of lamellipodia and pseudopodia struc-
tures. If there is a significant difference in area and
shape/density metric between cell mask and phalloidin
layers (reflecting more elongated and irregular cytoskele-
tal morphology), the cell is classified as having pseudo-
pods; if there is no significant difference, then a “normal”
phenotype is assigned. Visual inspection of this automated
classification operation confirms that cells automatically
classified as pseudopod represent elongated cells con-
taining significantly more pseudopod extensions than
normal counterparts.
Step 5: Individual cells were segmented and 150 distinct

parameters, including DAPI nuclear intensity, nuclear
area, Phalliodin intensity cytoplasm/nucleus, tubulin
intensity cytoplasm/nucleus, cell circumference, cell
number, etc., were calculated. In addition, we calculated
round, normal, and pseudpopod subclassifications as
proportions of total cells. See Supplementary Fig. S2 for
the full list of measured parameters.

Statistical and neural network analysis
Data aggregation, normalization, principal components

analysis, and Mahalanobis hit stratification.
Step 1: All image analysis measurements were aver-

aged over the cell population from each individual mi-
crowell sample to give “well-level” measurements.
Step 2: To account for week-to-week variability in

intensity-based measurements, data were normalized,
on a feature-by-feature basis, by subtracting the median
of negative controls for each microtiter plate.
Step 3: Triplicate samples across separate microtiter

plates were averaged to produce median values for each
measured parameter.
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Step 4: As an initial tool for exploring and visualizing
multiparametric image analysis data, principal compo-
nent analysis (PCA) was run in R and applied to all
available data, including all compound and control
DMSO-treated samples, on a per cell line and per time
point basis.
Step 5: Outliers to the negative control cloud (DMSO

control samples) were identified from the principal com-
ponents plot and the corresponding well image exam-
ined manually. If the image suggested experimental
artifact, the observation was removed.
Step 6: For each individual cell type and time point, a

Mahalanobis distance metric (20) was applied across all
compound and control DMSO-treated samples as a mul-
tiparametric hit stratification tool. We define activity in
our phenotypic assay as something that is significantly
different from the cloud of DMSO-negative controls.
We calculate the Mahalanobis distance in multidimen-
sional space between every negative control observation
and the center of the DMSO cloud. We then calculate the
Mahalanobis distance between the sample observation
and the center of the DMSO control cloud. If the observa-
tion is very similar to the negative controls, this distance
will be small. Alternatively, if the compound is doing
something significantly different from DMSO control,
the distance will be large. Repeating this process for ev-
ery compound at each of its doses yields a vector of dis-
tances. A Mahalanobis distance threshold can then be
applied to identify atypical responses either in shape or
distance from the DMSO control. A manually defined
Mahalanobis metric threshold at a significance value of
P < 0.01 was used as the basis of an automatic hit strat-
ification tool to identify any significant difference be-
tween compound-treated samples from the DMSO
control cloud for each cell type and time point. A com-
pound was deemed active if the Mahalanobis distance
was significantly greater than the selected threshold for
at least one of its doses tested.
Kohonen network. Multiparametric phenotypic re-

sponse data across all cell types and time points were
used to generate a two-dimensional Kohonen network
(or self-organizing map) to facilitate the comparative
analysis of phenotypic drug response across cell types,
time points, and compound dose. A Kohonen network
was created using the Spotfire Decision-Site software.
Step 1: The data used for the Kohonen network training

were taken from the point after the multiple fields of
view had been averaged and after the normalization of
intraplate effects.
Step 2: Z-score normalization (subtracting the mean and

then dividing by the SD) was then applied to each of the
150 image features before training. This ensured that fea-
tures with higher magnitudes did not dominate the
weighted-sum calculations used by the training algorithm.
Step 3: The map size was set to a 50 × 50 grid and a

neighborhood size of 40 was used.
Step 4: A Gaussian neighborhood function was used

with an initial radius size of 30, decreasing over the itera-

tions to a radius of 2. This linearly decreasing radius
function was used to allow high-level structure to emerge
more quickly than using a constant radius size.
Step 5: The learning rate was set at 0.05.
Step 6: The network was allowed to train for 50,000

iterations although it showed no significant further con-
vergence after 40,000 iterations.
Step 7: The resultant map was used to visualize the

multiparametric data points for each compound dose.
k-nearest neighbor classification. Finally, a k-nearest

neighbor classification algorithm (kNN) was applied to
the predictor variables on their original scale to make a
prediction about a particular compound's MOA. For an
object (compound) with an unknown classification, we
first determine which of the training set are closest (most
similar) to the new object and then assign the new object
to the class that is most common among its k nearest
neighbors. The algorithm was applied on a leave-one-
out basis using 21 nearest neighbors and the Euclidean
distance metric. In addition to the prediction, we can cal-
culate an associated certainty measure, which represents
the proportion of the nearest neighbors with the predom-
inant mechanistic class. The 21 nearest neighbors can be
ranked by similarity based on their Euclidean distance to
the compound of interest.

Automated data processing
All routine data collation, normalization, and applica-

tion of multivariate statistical techniques were incorpo-
rated into an automated data processing and reporting
workflow created using the Pipeline Pilot software
(Accelrys). This workflow was built using a set of core
processing components designed specifically for han-
dling multivariate plate–based high-content screening
data and allows new workflows to be rapidly tailored
to new assays. The workflow first joins raw data–relating
compound and cell plates with results from the Definiens
image analysis. Data from the different fields of view in
each well are aggregated and then normalized to the
plate controls. The Pipeline Pilot workflow is then used
to automate the execution of the R algorithms to per-
form PCA, the Mahalanobis hit stratification, and kNN
clustering.

Results

High-content image analysis of complex phenotypes
across distinct cell types
The phenotypic response of cells following chemical

perturbations is inherently unstable; multiple pheno-
types may appear transiently with distinct temporal dy-
namics for any specific compound and dose. To define
the optimal time point for our high-content phenotypic
analysis, we used the brightfield kinetic imaging capabil-
ities of the Cell-IQ instrument coupled with associated
machine-learning algorithms to kinetically monitor de-
fined phenotypic responses (Supplementary Fig. S1).
Supplementary Fig. S1B and C shows how the kinetics
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of the transient mitotic arrest phenotype induced with
the microtubule-disrupting drug colchicine can vary de-
pendent on cell type and dose. From the kinetic pheno-
typic response data obtained, 24- and 48-hour time points
following compound exposure were selected for detailed
high-content analysis to ensure the capture of a broad
range of both transient and sustained phenotypic re-
sponse across cell types.
The integrity of the actin and microtubule cytoskeleton

is critical for cell viability and support cell motility,
nuclear division, and cytokinesis that drives tumor
growth and metastasis (21). We have developed a multi-
plex high-content cell morphology assay to monitor cyto-
skeletal, nuclear, and cellular morphology in detail across
distinct, MCF7-wt (wild-type p53), MCF7-p53 (mutant
p53), MiaPaCa2, and Ovcar3 cancer cell types.
To compare and contrast small molecule–induced

change in morphology between relevant cancer cell
types, our aim was to design a generic image analysis
algorithm to automatically monitor both complex and
subtle changes in cell morphology across distinct cancer
cell types without any manual image-based thresholding.
This challenge is further complicated by distinct hetero-
geneous cell morphologies in control and compound–
treated cells across the four cell types selected for study
(Fig. 1A and B). To manage the vast variety of pheno-
types produced from screening mechanistically distinct
compounds, a bespoke image analysis algorithm was de-
signed using the Definien's Cellenger software package
(22). Initially, the algorithm segments cells by accurately
defining cellular and nuclear boundaries (see Materials
and Methods). HCS CellMask whole-cell stain is used
by the algorithm to define the boundary between a cell's
cytoplasm, that of neighboring cells, and the background,
thereby providing a robust cellular segmentation algo-
rithm. When applying this method, even tightly packed
cells within a population can be successfully segmented
from one another (Fig. 1A). The algorithm uses the DAPI
DNA-binding stain to define the nuclear border (Fig. 1A).
Following cell and nuclear segmentation the algorithm
next quantifies cytoskeletal and DNA marker intensities,
shape, and texture as well as whole-cell shape metrics for
each cell. As the Definiens algorithm is context based,
every measurement can be related to each segmented
cell. Due to the wide heterogeneity of cell phenotypes
observed within cell populations especially following
compound perturbation, a further level of subpopulation
segmentation is beneficial (23, 24).
The subpopulation segmentation in this study was

achieved through a rationale image analysis–based
approach, using ratiometric analysis and automated
thresholding of selected cell shape features and intensity
measurements (see Materials and Methods). Using this
method, cells were initially classified into round and other
(nonelliptical) populations.A numerical threshold relating
to the number and size of pseudopods was predefined to
discriminate the pseudopod phenotype from a normal
morphologic phenotype. Pseudopod phenotypic classifica-

tion corresponds to elongated cells that contain significantly
increased numbers of filamentous actin containing pseu-
dopod and lamellipod extensions compared with a cell
classified as “normal” phenotype (see Materials and
Methods for detailed subclassification criteria). Therefore,
in this study, cells were segmented into four distinct
subpopulations: round, other, pseudopod, and normal
(Fig. 1C). Within each subpopulation, over 100 direct fea-
ture parameters can be extracted and quantified per cell
(see Supplementary Fig. S3 for a complete list of para-
meters). Such classification enables detailed analysis of
complex and heterogenous phenotypes, and cellular
subpopulations at the well level. Amongmultiple varying
phenotypes, which can be detected using this algorithm,
we also show the ability to profile epithelial to mesenchy-
mal transitions (Fig. 1D). Incubation of MCF7-wt cells
with a nonselective Src tyrosine kinase inhibitor, PP2, at
3 μmol/L for 24 hours induces an epithelial phenotype.
This epithelial phenotype can be differentiated from the
mesenchymal phenotype induced following incubation
with the HDAC-1 and nitric oxide synthase inhibitor
valproic acid at 150 μmol/L for 24 hours (Fig. 1D). The ki-
netic and multiparametric image analysis approaches de-
scribed in Supplementary Fig. S1 and Fig. 1 enable a
unified approach to the analysis of complex and distinct
phenotypic responses across relevant cell models follow-
ing compound treatment.

Automatic statistical analysis of multiparametric
phenotypic data and clustering by MOA
The analysis of large volumes of multiparametric data

across multidimensional assay formats incorporating
time series and distinct cell types in a time frame suitable
for drug discovery presents a significant logistical chal-
lenge. Underpinned by the Pipeline Pilot software from
Accelrys, we have developed an innovative data analysis
protocol incorporating multivariate statistical tools to au-
tomatically collate, analyze, and rank multiparametric
high-content phenotypic results.
PCA enables simple visualization of large, complex,

multiparametric phenotypic response across a dose re-
sponse. Figure 2A shows the projection of the sample
scores onto the first three principal components, which
explain ∼60% of the variation in the data set. The red
cloud in the middle is the group of negative controls
(0.1% DMSO-treated samples); each other point on the
plots represents a compound at a particular dose. The
points have been colored by compound and joined by
lines between doses. Distinct phenotypic responses
across a dose range are often displayed as distinct trajec-
tories within the three-dimensional scattergram plot of
three principal components (Fig. 2). The Mahalanobis
distance metric is a multiparametric distance statistic
(20), which can be used to define activity in an assay
by identifying atypical responses either in shape or
distance from the cloud of DMSO vehicle–negative con-
trols (see Materials and Methods). A Mahalanobis dis-
tance threshold is calibrated for each assay by manually
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Figure 1. Bespoke image analysis across distinct cancer cell types. A cellular morphology assay was designed to monitor, in detail, changes in cytoskeletal
and nuclear architecture across multiple cancer cell types. This four-wavelength multiplex assay consisted of the DNA binding dye, DAPI (blue), an
actin cytoskeleton marker, Phalloidin (red), anti–β-tubulin antibody (green) to monitor the microtubule cytoskeleton, and the cytoplasmic marker, HCS
cell mask. A, an image analysis algorithm created using Definiens Cellenger first segments individual cells by identifying nuclear and cytoplasmic
boundaries. Cell and nuclear segmentation are indicated by red and white pseudocolor, respectively. B, examples of the broad spectrum of heterogenic
phenotypes captured when applying this assay after compound incubation. Examples shown are from MCF7-wt cells. C, following cell segmentation, the
Definiens image analysis algorithm captures distinct parameters for each individual cell, which represent a variety of geometric, intensity, subcellular
localization and texture features. Based on a selection of feature parameters, the algorithm assesses changes across specific subpopulations, such as
normal, round, and pseudopod (pseudopod class refers to elongated cells containing a higher proportion of filamentous actin–containing projections than
normal cells). D, validation of this subpopulation analysis was done by monitoring transition to epithelial and mesenchymal phenotypes following
treatment with PP2 and valproic acid, respectively. Scale bars, 100 μm.
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checking a selection of control and compound-treated
images around the periphery of the DMSO control cloud,
as indicated by PCA. The user-defined Mahalanobis dis-
tance metric and appropriate confidence limits (P < 0.01)
are then automatically applied across all total com-
pounds and doses to provide a robust and sensitive hit
stratification method for multiparametric high-content
data (Fig. 2A).

The PCA analysis presented in Fig. 2B shows the
multiparametric analysis of our high-content morpholo-
gy assay on compound-treated MCF7-wt cells. Protein
synthesis inhibitors (anisomycin, cyclohexamide, eme-
tine, and rapamycin) can be differentiated from the
protease inhibitor class [ALLN (N-acetyl-Leucine-
leucine-Norleucinyl), doxorubicin, proteasome inhibitor 1,
MG132, and chloramphenicol]. This occurs despite the

Figure 2. PCA incorporating Mahalanobis distances to identify active compounds. A, working in the principal components domain, the Mahalanobis
distance metric is used to identify compound-induced phenotypes significantly different from the multiparametric DMSO control ellipsoid cloud distribution.
Compounds producing atypical parameter responses from the DMSO cloud are identified and those above a calibrated Mahalanobis distance threshold
are automatically stratified and classified as a “Hit” in the morphology assay. B, PCA visualization identifies distinct phenotypic responses across a
dose response that relate to compound MOA such as inhibition of protein synthesis, disruption of actin filaments, DNA replication inhibitors, and
microtubule-disrupting agents. In addition, target selectivity, structure activity relationships associated with particular phenotypic outcome, can be
identified from within the protease inhibitor panel set (dotted lines, MG132 and ALLN). The Eigenvalues for all three principal components displayed
are as follows: PC1, 58.9%; PC2, 27.58%; and PC7, 13.5%. C, further discrimination of MOA of microtubule-disrupting agents can be visualized
by PCA. Eigenvalues for PCA plots are displayed. D, transition between epithelial and mesenchymal subpopulations can also be defined by PCA
of the multiparametric image analysis measurements.
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protease inhibitor class being composed of a diverse chem-
ical set that portray a broad cluster of phenotypes over a
large area of phenotypic space. Within this chemically di-
verse protease inhibitor set, evidence exists of target selec-
tivity and structure activity relationships associated with
distinct phenotypic outcome. The only two active peptide al-
dehyde inhibitors, MG132 and ALLN, cluster tightly and
separately from the rest of this protease class (Fig. 2B).
DNA replication inhibitors (aphidicolin, arabinofuranosyl-
cytosine, filipin, floxuridine, hydroxyurea, and mitomycin
C) cluster separately and can be differentiated from the set
of actin-disrupting agents (cytochalasin B, cytochalasin D,
latrunculin B, and jasplakinolide; Fig. 2B). Within the actin-
disrupting agent cluster, jasplakinolide, while presenting a
similar phenotypic tangent to latrunculin B and the cytocha-
lasins B and D, also segments separately at higher doses,
representing a distinct mode of action possibly due to a
reported competition with a phalloidin binding site on fila-
mentous actin (25). Eigenvalues for PCA scattergrams dis-
played in Fig. 2B are as follows: PC1, 58.9%; PC2, 27.58%;
and PC7, 13.5%. PCA analysis not only distinguishes be-
tween actin and microtubule-disrupting agents but also
can further discriminate between microtubule-disrupting
and stabilizing agents based on heterogenous phenotypic re-
sponse at the well level (Fig. 2C). Eigenvalues for PCA scat-
tergrams displayed in Fig. 2C are as follows: PC1, 63.74%;
PC2, 29.85%; PC6, 6.4%(microtubule disrupting agents);
and PC1, 58.9%; PC2, 27.6%; and PC3, 13.5% (Taxol/
epothiloneB versus colchicine/nocodazole). Epithelial to
mesenchymal transition in cancer cells has significant
relevance to tumor metastasis and therapeutic response.
Using PCA analysis, we show that our Definiens algorithm
andmultiparametric high-content assay can differentiate ep-
ithelial (AG1478 and PP2) and mesenchymal (Y27632 and
Valproic acid) phenotypes inMCF7-wt cells (Fig. 2D). Eigen-
values for PCA scattergrams displayed in Fig. 2C (epithelial
versus mesenchymal) are as follows: PC1, 58.9%; PC2,
27.6%; and PC3, 13.5%. All PCA data presented in Fig. 2
are of MCF7-wt cells (data from other cell types are not
shown). The automated Mahalanobis and PCA protocols
run in pipeline pilot enable rapid and robust hit stratification
and visualization of complex phenotypic responses across
compound dose response. Reference to Eigenvalues and as-
sociated PCA loadings indicates precise phenotypic features
that discriminate between compound-induced response,
thereby informing compound MOA.

Kohonen networks: profiling phenotypic response
across distinct cancer cell lines
To monitor distinct phenotypic responses across dis-

tinct cancer cell types, we have used a neural network
approach (26). A Kohonen network (self-organizing
map) was generated to display multidimensional pheno-
typic data for each compound across dose response and
cell type in a two-dimensional grid format (26). The
Kohonen network enables the direct visualization of dis-
tinct multiparametric phenotypic responses to a specific
compound treatment across the panel of four cell lines

tested in this study (Fig. 3). When a Kohonen network
has converged, data points that are similar to each other,
in this case representing a similar multiparametric phe-
notypic response, will cluster together in similar areas
of the map. By analyzing the topological relationships
between points on the map, we can gain insight into
the phenotypic relationships present in the data set.
Within the reference library of compounds tested in this
study, select compounds elicited a variety of resistance
and sensitivity patterns across our cell panel, as deter-
mined by subsequent cross-reference of phenotypic space
on the map to specific phenotypic features including cell
number values and original images. In addition, some
compounds produced the same phenotypic response
across the four cell lines in which the data points over
the dose response cluster together within the two-
dimensional grid. Compounds, such as demecoline,
show clustering across the dose response in accordance
to cell line tissue origin (Fig. 3C); for example, MCF7-
wt and p53 mutant cells cluster together, representing a
characteristic microtubule disruption phenotype exem-
plified by nuclear fragmentation and diffuse microtubule
staining (see Fig. 4A). MiaPaCa2 and Ovcar3 cells cluster
separately, representing a highly sensitive response as
shown by reduced cell number and cytotoxic phenotype,
and somewhat resistant phenotypes, respectively (Fig. 3C).
Epothilone B, the microtubule stabilizer, induces a similar
phenotypic response across all four cell lines tested (Fig. 3B).
Following emetine treatment, the Ovcar3 cells cluster
separately from MCF7 and MiaPaCa 2 cells; furthermore,
the phenotypic response of MCF7-wt cells is different
from MCF7-p53 cells (Fig. 3D). Corresponding emetine
phenotypic response pattern with cell number values
and images indicate that MiaPaCa2 and MCF7-p53 cells
are more sensitive to emetine treatment (as shown by
reduced cell number and a cytotoxic appearance) relative
to MCF7-wt and Ovcar3 cells.
Kohonen networks can enable the rapid visualization

of compound-induced phenotypic responses across mul-
tiple dimensions including dose-response and cell type.
Corresponding patterns of phenotypic response across
cell types to cytotoxic phenotypic characteristics and cell
type–specific mutation status can rapidly elucidate ther-
apeutic sensitivity and resistance across cell models, as
well as uncover novel mechanistic insight in relation to
genetic background and mutation status (e.g., p53 muta-
tion status as shown in Fig. 3D).

kNN statistics: clustering and ranking compounds
by biological MOA and uncovering novel
mechanistic insight
The kNN algorithm is a simple but intuitive algorithm

that classifies new objects from unknown groups based
on their phenotypic similarity to that of an annotated
training set. It starts with multivariate measurements
on the training set, for which the correct classifications
(MOA) are already known. For an object with an un-
known classification, we first determine which of the
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training set are closest (most similar) to the new object
and then assign the new object to the class that is most
common among its k-nearest neighbors. kNN allows
quantitative clustering and the MOA of test compounds
to be predicted based on their phenotypic similarity to
those of an annotated reference set of compounds as de-
fined by the multiparametric Definiens analysis of the
morphology assay. Figure 4 shows a sample output from
an interactive kNN classifier tool, which was integrated
with the high-content analysis data and the Mahalanobis
hit-stratification method using Accelrys' Pipeline Pilot
software. This tool enables users to select any active com-
pound or dose from the high-content assay and then run
the kNN classifier across the entire reference set. The out-
put displays the selected compound of interest, its dose,
and predicted MOA based on the most prevalent MOA
among its 21 nearest neighbors from the reference set. A
probability score for the assigned MOA is calculated by
the proportion of its 21 nearest neighbors representing
the predominant MOA.
In addition, the 21 nearest compounds or neighbors are

ranked in order according to their similarity as deter-
mined by Euclidean distance metrics, the shorter the dis-
tance the more similar the phenotype (Fig. 4A and B).

When cross-referencing the phenotypic signature of
MCF7-wt cells after 24 hours of exposure to 1 μmol/L
demecoline, a microtubule-disrupting agent, the kNN
tool predicts with a 95% KNNCV probability that deme-
coline is in fact a microtubule-acting compound (Fig. 4A).
The 13 nearest neighbors to demecoline are specifically
microtubule-disrupting agents (Fig. 4A). Raw acquisition
images of control MCF7-wt cells and 24 hours following
exposure to 1 μmol/L demecoline and 0.3 μmol/L vincris-
tine (nearest neighbor to 1 μmol/L demecoline) are shown
to validate the interactive kNN results (Fig. 4A). Similarly,
for the microtubule stabilizer paclitaxel's phenotypic
readout at 0.03 μmol/L, the seven nearest neighbors are
also microtubule-stabilizing agents (Fig. 4B).
The Euclidean distance of nearest neighbors can be

used to further compare compoundMOA across the panel
of cell lines. Table 1 displays the top five nearest neighbors,
their dose (enclosed brackets), and Euclidean distance
similarity metric (enclosed asterisk) for seven selected
compounds at a chosen active dose across the four cell
types based on the Definiens high-content morphology
study (24-h time point following compound treatment).
For demecoline at 1 μmol/L, the closest neighbor is

vincristine followed by a range of vincristine doses with

Figure 3. Kohonen networks:
profiling phenotypic response
across distinct cancer cell lines.
A Kohonen network was generated
to display multiparametric image
analysis data representing distinct
dose-dependent phenotypic
responses across multiple cancer
cell types. Each data point
represents the multiparametric
phenotype measured by the
Definiens image analysis algorithm
for each specific dose of tested
compounds. Data shown displays
phenotypic distribution across
DMSO controls (A), dose response
of epothilone B (B), demecoline (C),
and emetine-treated MCF7-wt,
MCF7-p53-mut, MiaPaCa2, and
Ovcar3 cells (D).
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short Euclidean distances (high degree of similarity) across
all cell types. This suggests that demecoline and vincristine
share a similar MOA (microtubule destabilizers) within
each cell line. However, with the aid of Kohonen net-
works, we deduce that demecoline has a different pheno-
typic response and potential cytotoxic potency between
the tissue origins of the cell panel (Supplementary
Fig. S5; Fig. 3). Phenotypic analysis of camptothecin (a

topoisomerase I inhibitor and DNA damage–causing
agent) at 1.5 μmol/L shows that its nearest neighbors
are exclusively DNA-damaging or DNA replication–
inhibiting agents across all cell types. These results show
the capability of our assay and associated kNN tool to
identify DNA damage and DNA-repairing agents.
Interestingly, the five nearest neighbors for MCF7-wt
and MCF7-p53 cells are floxuridine, mitomycin C, and

Figure 4. kNN clustering by MOA. A kNN nearest neighbor classifier was incorporated into an automatic interactive user interface to identify similar
phenotypic response and predict MOA based on similarity between multiparametric image signatures of test compounds with that of a reference library of
compounds. A, output of kNN analysis (MCF7-wt cells) to 1 μmol/L Demecoline (24 h). B, output of kNN analysis to 0.03 μmol/L paclitaxel (24 h). The
user interface displays the tested compound and its active dose; it also displays the compound's predicted MOA and the probability of this based on
the prevalent MOA of its 21 nearest neighbors. It next displays the 21 nearest neighbors of the tested compound along with their dose and known
MOA. Finally, it displays and ranks similarity based on the Euclidean distance from the selected test compounds: the smaller the distance, the closer in
phenotypic readout to the test compound. Associated images were collected to validate results. Scale bars, 100 μm.
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mitoxantrone, whereas those for MiaPaCa2 and Ovcar3
cells are etoposide and aphidicolin (Table 1). These results
indicate that camptothecin and/or its nearest neighbors
displaymodifiedMOAacross different cell types. Another
DNA-damaging agent, bleomycin, at 1.5 μmol/L exhibits
a much more diverse set of nearest neighbors across the
cell panel. Here, all of the top five nearest neighbors of
MiaPaCa2 cell are DNA replication or DNA-damaging
agents and the nearest neighbors of MCF7wt cell line
are also predominantly within this class of compounds.
In contrast, the predominant nearest neighbor of Ovcar3
cell is sodium fluoride and the closest compounds of
MCF7-p53 mutant cell are made up of a range of clas-
ses with no one particular mechanism being prevalent
(Table 1). This variety in mechanistic similarity may be be-
cause in contrast to specific targeted inhibitors, Bleomycin
has an effect upon multiple mechanisms that can be in-
fluenced by genetic and epigenetic factors specific to cer-
tain cell backgrounds.
Following treatment with the protein synthesis inhib-

itor Emetine at 1 μmol/L, MCF7-wt, MCF7-p53 mutant,
and MiaPaCa2 cells indeed have protein synthesis inhi-
bitors as their closest neighbors (Table 1). In contrast,
for Ovcar3 cells, there is no appearance of protein syn-
thesis inhibitors as emetine's nearest neighbors, sug-
gesting that incubation with emetine for 24 hours has
no specific effect on protein synthesis at 1 μmol/L or
has a different MOA to other protein synthesis com-
pounds within our training set in this cell line. The
actin disrupters cytochalasin D and B appear as nearest
neighbors to emetine at 1 μmol/L, in MCF7-p53 cells

(Table 1). Indeed, increased evidence of actin disruption
and a higher proportion of round cells can be observed
in raw images (Supplementary Fig. S6). This provides
some evidence that emetine may have a distinct in-
fluence upon cytoskeletal and nuclear morphology de-
pendent on the p53 status within MCF7 cells. This
hypothesis is further strengthened when analyzing
emetine with Kohonen networks as MCF7-wt and
MCF7-p53 mutant cells cluster separately from each
other as shown in Fig. 3.
Although simvastatin and lovastatin are the only two

lipid-lowering compounds within our reference library,
our cytoskeletal morphology assay and methods are
powerful enough to cluster them closely based on the
similarity of their phenotypic fingerprint. When profiling
lovastatin at 5 μmol/L, simvastatin is its closest neighbor
in all cell lines except Ovcar3 in which it is third closest;
however, here, simvastatin at 2 μmol/L has the smallest
Euclidean distance (4.87) across cell types, indicating a
similar phenotype to lovastatin.
We show how the application of the kNN tool can

predict the mechanism-of-action of a test compound by
reference to an annotated training set. We further show
how our kNN interactive tool incorporating Euclidean
distance metrics can rank compound similarity to a com-
pound of interest and thus facilitate compound selection
and decision making based on desired phenotypic re-
sponse. When applied to our multiparametric high-
content morphology assay data, we show the ability to
monitor differences in compound MOA across cell types.
We further show the sensitivity and robustness of the

Figure 5. Automated high-content
phenotypic data processing
workflow. Using the Pipeline
Pilot software, a series of data
processing scripts are linked to
automate the aggregation,
normalization, and collation of
Definiens raw image analysis data
with meta-data describing
experimental parameters. The
pipeline then integrates the merged
data with the application of
multivariate statistical analysis
algorithms created using the R
software including Mahalanobis hit
stratification, PCA, and kNN
classification to produce several
reports and interactive html files
that enable rapid interrogation
of multiparametric phenotypic
response data.
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approach by identifying MOA based on both subtle and
complex heterogenous phenotypic changes analyzed at
the well level.

Interactive automation capabilities for
high-throughput data analysis
A schematic of the fully automated data analysis

workflow created and implemented during this piece of
work using Accelrys's Pipeline Pilot software is shown
in Fig. 5. The raw data acquired from the Definiens algo-
rithm is initially collated with the relevant compound,
dose, cell type, and time point. Data from the four fields
of view in each well is then aggregated before being nor-
malized to the median of the negative DMSO controls.
Once data are normalized, the pipeline creates multiple
output files including a Microsoft Excel file of the raw
data, PCA visualization in Spotfire, a Mahalanobis hit
stratification tool resulting in an active dose “hit” identi-
fication list, and the interactive kNN html tool. The use of
this automated Pipeline Pilot workflow enables the rapid
and robust application of the multivariate analysis and
statistical tools described above and, in doing so, increase
the quality, consistency, and integrity of the data. This au-
tomated system empowers scientists to routinely use
high-end statistical and computational analysis to visual-
ize and quantify complex drug-induced phenotypes in a
timeline suitable for high-throughput screening.

Discussion

A primary objective of image-based high content
technologies are to provide a more informative and phys-
iologically relevant screening platform for selecting high-
quality drug candidates for further development (3, 8, 27).
It is anticipated that suchmethods shall reduce high levels
of compound attrition, during later stages of discovery
and development, by prioritizing new classes of thera-
peutics with improved efficacy and toxicity profiles (27).
To achieve such predictive power, it is necessary that
high-content assays recapitulate the complexities of in vivo
biology, including distinct genetic and epigenetic variants
that represent the broad spectrum of physiology and dis-
ease pathology exhibited across heterogeneous patient
populations and evolving disease pathophysiology. In this
article, we describe a flexible custom-designed high-
content phenotypic approach integrated into an automated
data processingworkflow to rapidly and robustlymonitor
phenotypic response across physiologically relevant cell
panels that either reflect patientmutation status or distinct
cancer origin. We describe the application of a series of
novel image analysis and data processing tools integrated
into a standard high-content phenotypic profiling work-
flow to facilitate compound prioritization for further de-
velopment based on relevant phenotypic readouts. The
high-content workflow described in this article begins
with the application of automated time-lapse phase-
contrast microscopy and machine learning algorithms
to define appropriate time points for the detailed moni-

toring of cellular phenotypic response. The creation of
custom-designed image analysis algorithms with Defin-
iens cognition network technology that yield the mea-
surement of features across cellular subpopulations
enables the capture of both complex and subtle pheno-
typic response across relevant cell types. TheMahalanobis
metric provides a robust hit stratification method based
on multiparametric phenotypic responses. Manual
calibration of a Mahalanobis distance threshold to define
active response from DMSO control followed by auto-
mated application to an entire data set enables robust iden-
tification of compound activity across broad phenotypic
space for any compound, dose, and time point tested. Such
a statistically driven approach to hit identification offers
substantial advantages over the laborious visual examina-
tion of images, not only in terms of objectivity, reproduc-
ibility, and time saved by scientists but also in terms of
sensitivity. Fromour experience, theMahalanobis hit strat-
ification tool is able to detect compound-induced pheno-
types that represent subtle changes in cell morphology
that may have been missed by the human eye. Generation
of Kohonen networks enable simple visualization of com-
plex multidimensional data sets. In this study, we apply a
Kohonen network strategy to evaluate multiparametric
phenotypic response signatures across dose concentra-
tions and cell types. The application of Kohonen network
to compare phenotypic response across distinct cell types
is only achievable as a consequence of our development of
a generic custom-designed image analysis algorithm that
can, automatically, measure high-quality morphologic
parameters across distinct cell types. kNN (nearest neigh-
bor) classifier aligned to a Euclidean distance metric was
applied in this study to rank compounds based on pheno-
typic similarity with an annotated reference set and then
ascribe a predicted MOA and associated probability score
for any selected compound.
In this study, we show how the application of Kohonen

and kNN methods to multiparametric high-content data
can uncover novel mechanistic insights by correlating
compound-induced phenotypic response with cell type
and genetic background. For example, using Kohonen
network analysis, we show that emetine induced a dis-
tinct phenotypic response in MCF7-wt cells compared
with MCF7-p53 mutant cells. These results suggest that
emetine-induced effects upon the actin cytoskeleton of
cancer cell lines may be dependent on p53 function. To
our knowledge this is the first report describing such a
p53 requirement for emetine-induced cellular function.
Indeed, previous studies have concluded that p53 does
not play a role in the emetine-induced apoptosis of tu-
mor cell lines (28). The identification of novel p53 require-
ments for compound-induced changes in cytoskeletal
architecture may have important consequences for tumor
invasion and cytokinesis. In addition, Kohonen and kNN
analysis highlight several distinct phenotypic responses
between Ovcar3 cells and the other cell types. Manual
visualization of images suggests that Ovcar3 cells are
more resistant to the effects of several mechanistic
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compound classes when compared with other cell types.
Comparatively, MiaPaCa2 cells seem more sensitive to
compound perturbation in many cases. The results from
the kNN analysis presented in this study further validate
the utility of the methods and workflow used by show-
ing the ability to automatically define biological similar-
ity within distinct mechanistic classes of compounds
including microtubule-disrupting and microtubule-
stabilizing agents, protease inhibitors, DNA replication
inhibitors, and statins.
The application of high-content phenotypic profiling to

relevant cell types and phenotypes described in this
study enables clear clinical hypotheses to be tested, ensur-
ing the collection of high-content results with biological
meaning, thereby facilitating compound selection. We
further show how these methods can be integrated into
a generic data processing workflow to allow rapid deci-
sion making based on chemical and biological similarity.
As shown in this article, the ability to custom design

Definiens image analysis algorithms to capture user-
defined phenotypes across challenging cell types and het-
erogeneous responses indicates the potential to apply
these approaches to primary, patient-derived tumor cells.
Such methods may provide direct correlation between

phenotypic outcomes following compound treatment
with heterogeneous tumor cell types including cancer-
derived stem cell populations.
We anticipate that the application of the approaches

described in this article aligned with physiologically
relevant high-content screens offers the potential to drive
the development of a new generation of therapeutics
encompassing pharmacologic compositions or polyphar-
macology tailored to appropriate disease context and
cellular subtype.
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