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Many biological pathways were first uncovered by identifying mu-
tants with visible phenotypes and by scoring every sample in a screen
via tedious and subjective visual inspection. Now, automated image
analysis can effectively score many phenotypes. In practical applica-
tion, customizing an image-analysis algorithm or finding a sufficient
number of example cells to train a machine learning algorithm can be
infeasible, particularly when positive control samples are not avail-
able and the phenotype of interest is rare. Here we present a
supervised machine learning approach that uses iterative feedback to
readily score multiple subtle and complex morphological phenotypes
in high-throughput, image-based screens. First, automated cytologi-
cal profiling extracts hundreds of numerical descriptors for every cell
in every image. Next, the researcher generates a rule (i.e., classifier)
to recognize cells with a phenotype of interest during a short,
interactive training session using iterative feedback. Finally, all of the
cells in the experiment are automatically classified and each sample
is scored based on the presence of cells displaying the phenotype. By
using this approach, we successfully scored images in RNA interfer-
ence screens in 2 organisms for the prevalence of 15 diverse cellular
morphologies, some of which were previously intractable.

high-content screening � high-throughput image analysis � phenotype

The history of biology has been dramatically shaped by classic
visual screens in model organisms, including Drosophila mela-

nogaster (1–3), Saccharomyces cerevisiae (4), Caenorhabditis elegans
(5), and the zebrafish Danio rerio (6, 7). In each case, biological
pathways were discovered because researchers were intrigued by
groups of peculiar-looking mutants and identified the genes un-
derlying their phenotypes. Because researchers have favored the
extensive study of relatively few genes (8), classic, wide-net ap-
proaches like screening are as relevant as ever to probe known
biological pathways and discover new ones. Modern technology
now enables large-scale experiments in cultured cells to identify
human genes that underlie biological processes via RNAi. Auto-
mation also allows the screening of chemical libraries to identify
perturbants useful as research tools or drugs.

Despite these advances, scoring cells in images for rare and
unusual morphologies has, in general, remained a significant
bottleneck (9–12). Cell image analysis allows accurate identifi-
cation and measurement of cells’ features, enabling automated
analysis of certain phenotypes that were previously intractable
(13–26). However, many interesting phenotypes require the
assessment of several measured features of cells. Machine learn-
ing methods that select and combine multiple features for
automated cell classification have been used to score many
phenotypes (15–26). These methods require the provision of
example cells that do and do not display the morphology of
interest (i.e., positive and negative cells). Finding positive cells is
straightforward when positive control samples are available and
most of the cells therein show the phenotype. However, when
this is not the case, as in classic exploratory screens, finding a
sufficient number of positive cells can be prohibitively difficult.

Even when positive control samples are available, using positive
example cells from only those samples can lead to inaccurate
scoring because of overfitting of the machine learning algorithm.

Here we describe our approach to scoring multiple complex and
subtle phenotypes in large-scale, image-based screens. It is partic-
ularly effective when positive control samples are not available or
not highly penetrant, as is often the case in RNAi and chemical
screens. Our approach uses: (a) a biologist’s ability to identify an
‘‘interesting’’ phenotype, (b) automatic measurement of multiple
features for each cell, (c) a computer’s ability to rapidly test multiple
combinations of features using machine learning algorithms, and
(d) a computer’s ability to quickly and objectively classify millions
of individual cells based on their measured features. We used our
approach to score 15 diverse cellular phenotypes in large-scale
RNAi screens in human and D. melanogaster cells, demonstrating
that automated scoring for image-based chemical and genetic
screens for multiple complex, low-penetrance phenotypes is now
feasible.

Results
Overview of the Approach. We have developed and validated a
method for researchers to rapidly train a computer to score unusual
cell morphologies automatically (Fig. 1). First, we automatically
identify and measure every cell in every image in the experiment by
using the cell-image analysis software CellProfiler (13), which
generates a cytological profile (27), or cytoprofile, for each cell. This
cytoprofile consists of a set of numbers that describe the cell’s
characteristics, including size, shape, and the intensity and texture
of various stains in various compartments (Fig. 1A). Next, the
researcher initiates the training phase by identifying a few positive
example cells that display a phenotype of interest and negative
example cells without the phenotype (Fig. 1B). These cells can be
from control samples if the screen has been designed to address a
particular phenotype, or selected at random if the screen’s goal is
to uncover previously uncharacterized phenotypes in an explor-
atory screen. Most commonly, these example cells are taken from
the full population without reference to the particular sample from
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which they are derived. This action is taken to avoid overfitting the
machine learning algorithm to a few particular samples.

Once a few dozen individual cells have been classified by the
researcher, a machine learning algorithm is used to determine a
tentative rule (i.e., a classifier) that distinguishes the cytoprofiles of
the positive and negative example cells, using the GentleBoosting
algorithm applied to regression stumps (28). Other machine learn-
ing methods are likely to be equally effective, based on their
performance in previous work (15–24). The system then presents
the researcher with a new batch of cells, which it has classified based
on the tentative rule, and the researcher corrects errors. The
corrections are used to refine the rule. After several rounds of error

correction and rule refinement, the researcher has classified a few
hundred cells, and these are used to produce a rule specific to the
phenotype of interest. In the final step (Fig. 1C), the rule is applied
to the cytoprofiles of every cell in the experiment, classifying each
cell as positive or negative. Ultimately, the goal of the screen is to
score each sample, which is a population of cells subjected to a
particular RNAi or chemical treatment. Because simply ranking
samples by the percentage of cells that are positive can be mislead-
ing for samples with few cells, we developed an ‘‘enrichment score’’
to rank each sample (see Fig. 2 and Methods). The researcher may
continue to conduct further rounds of error correction and rule
refinement based on images from samples with many positive cells,
ultimately producing a rule with satisfactory accuracy. Although
highly dependent on the complexity of the phenotype and the
scarcity of positive example cells, the entire process of training for
a phenotype typically takes a few hours.

Scoring RNAi Screens for Diverse Phenotypes in Human Cells. We used
this iterative approach to recognize and score 14 diverse pheno-
types (Figs. 3 and 4) based on measurements acquired from �8.3
million human cells contained within 40,000 previously acquired
fluorescence images (14). The cytological profile for each cell
contained 610 measurements (see SI Text), resulting in more than
5 billion measurements total. Some of the phenotypes we chose are
well-known—cells in particular subphases of mitosis, for example.
Others, such as crescent-shaped nuclei (Fig. 3E) and blebs of actin
that sometimes formed tubular projections (Fig. 3A), have no clear
biological interpretation.

Nearly every phenotype we attempted to score could be scored
accurately without customization of the image processing. That is,
the standard cytoprofiles were sufficient for accurate classification
in all but the Peas in a Pod phenotype. We added one feature (angle
between a nucleus’ 2 nearest neighbors) to the image-analysis step
to better identify this phenotype (Fig. 4C). Also, we abandoned
attempts to train a rule to identify a ‘‘sparkly actin’’ phenotype (Fig.
S1); few positive example cells could be found, and it is possible that
our cytoprofiles did not contain appropriate texture measurements.

Features from the cytoprofiles that were used to classify cells for
each phenotype usually included a mixture of measurements of

Fig. 1. Scoring cell morphologies via cytological profiling, iterative feedback,
and machine learning. (A) Images of cell populations for each treatment condi-
tion (RNAi or chemical) are processed with cell-image analysis software (e.g.,
CellProfiler) to identify and measure individual cells, in order to generate a
cytological profile, containing a collection of measurements of features of each
cell, represented schematically here as a bar code. (B) The software system
presents the researcher with individual cells for classification, sampled randomly
from the screen-wide population. After a few dozen cells are classified, the
researchercanbeginthe iterativemachine learningphase, inwhichthecomputer
generatesatentative rulebasedontheclassifiedcellsandpresents theresearcher
with cells classified according to that rule. In general, larger training sets produce
more accurate rules, and using too small a training set can result in the computer
training to a too-narrow definition of the phenotype (Fig. S10). Generating a
largetrainingsetwithout iterative feedbackcanbedifficultwhenthephenotype
is rare or no positive control samples are available; these are the cases where the
iterativenatureofourapproach ismostuseful.Theoptimal initial trainingset size
depends on the complexity of the phenotype and the scarcity of positive cells in
the experiment. After the researcher corrects errors and retrains for several
rounds, the rule becomes more accurate. (C) When the accuracy of the rule is
sufficient, it is used to classify all cells in the experiment in order to calculate the
number of positive and negative cells in each sample.
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Fig. 2. Validation example of actin blebs phenotype. (i) The approach rank-
orders samples (populationsofcellsunder thesametreatmentcondition)by their
enrichment score (see Methods) and allows selection of positive and neutral
samples based on this automated scoring. (ii) The corresponding phenotype
penetrance is shown for the positive and neutral samples. Phenotype penetrance
is typically correlated with enrichment score except that a low number of cells in
asamplecandecreasethescoredespiteahighpenetrance. (iii)Thecorresponding
validation data are shown for the positive and neutral samples. The height of the
bar for each sample indicates how many times a human observer chose that
sampleasapositive inaforced-choicecomparison (seeMethods). In thisexample,
samples that were scored as positives (Left) were also chosen by the researchers
as positives (11 or 12 times, of 12 comparisons per sample), and none of the
neutral samples (Right) were routinely chosen as positive (0 or 1 time of 12
comparisons). Corresponding data for all phenotypes is shown in Figs. 3 and 4.
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Fig. 3. Results of the phenotype-scoring system, for diverse cellular morphologies in human cells. Each row shows images and data for a different cellular
morphology that the system was trained to recognize and score. The phenotype column shows the name of each phenotype along with the number of positive
and negative example cells in the training set after all rounds of iteration were completed by the researcher. Images for each phenotype follow a color scheme:
blue, DNA (contrast-stretched); red, actin (contrast-stretched); green, phospho-histone H3 (absolute scale). (Left) Traditional pseudocoloring of the fluorescence
microscopy images. (Right) Color-adjustment using the ‘‘Invert For Printing’’ module of CellProfiler. The width of each image (or montage, for multiframe images)
is 102 �m. For details on the validation column, see Fig. 2. The penetrance histogram column shows the distribution of per-sample penetrance for each phenotype,
along with the mean (shown as text and with a green line) and the model fit to the data (red line).
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intensity, texture, and area/shape (Fig. S2 and SI Text). Some
features were unexpected, implying that choosing features manually
by using biological or image-analysis expertise would have over-
looked useful features. The features also served to generate hy-
potheses about phenotypes that were otherwise uncharacterized.
For example, cells showing the actin blebs and peripheral actin

phenotypes tend to have 4N DNA content, indicating an unex-
pected relationship to the cell cycle (Fig. S3).

For most phenotypes, we knew of no samples that could be
considered positive controls, precluding our use of existing methods
that require highly penetrant controls (15, 19, 20). Typically, our
only exemplars were unusual phenotypes that we observed at a low

Fig. 4. More results of the phenotype-scoring system, for diverse cellular morphologies in human cells. See Fig. 3 for details.
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frequency in WT cells. Factors like cell cycle, local environment,
stochastic noise, and epigenetics all play a role in generating
nonuniform populations of cells (29, 30). We therefore wondered
whether any samples would have an unusually high proportion of
cells showing these naturally occurring rare morphologies. Inter-
estingly, every phenotype we pursued yielded at least some RNAi
samples in which the phenotype was significantly enriched. This is
consistent with the possibility that the number of phenotypic states
that are possible for a cell is fairly limited, and natural variation in
mRNA expression levels can push cells into one of these states, even
without the influence of RNAi. In any event, the system enabled us
to indulge our curiosity by pursuing unusual and uncharacterized
cellular morphologies, as in classic genetic screens.

Validation, Comparison to Previous Methods, and Flexibility. We
tested our method’s accuracy at ranking samples by having re-
searchers score samples (that is, images showing a population of
cells) by eye. The biologically relevant score for a sample is
enrichment of cells that display the phenotype, rather than a hard
‘‘positive’’ or ‘‘negative’’ label, because samples in screens typically
do not fall into clear positive and negative classes (particularly when
judged by different researchers), but instead fall along a continuum
(31). Our goal is to bring highly enriched samples to the attention
of the researcher; therefore, our validation design (forced choice,
described in Methods) (32) aimed to test whether top-ranking
samples were indeed enriched relative to samples scored as neutral.

The results for actin blebs are shown in detail in Fig. 2, and
data for all human cell phenotypes are shown in the validation
column in Figs. 3 and 4. For each phenotype, we rank-ordered
the 5,000 puromycin-treated samples by enrichment score (Fig.
2A), as would be done in a typical screen. For validation,
researchers were forced to choose between pairs of samples. One
sample in each pair had been scored by the computer as highly
enriched for the phenotype and the other as neutral. We
recorded the number of times each sample was chosen as positive
by the researchers (bar chart, Fig. 2C).

Among all 360 samples identified as ‘‘hits’’ across the different
phenotypes (Figs. 3 and 4, positive samples column), there were 0
false negatives among the 360 samples identified as neutral and 2
potential false positives (red stars in Fig. 3E). Note that false
positives can be readily weeded out by eye after analysis and that we
cannot estimate the actual false-negative rate without knowing a
priori the number of true positive samples, which is not possible in
this screen. Agreement between humans was comparable with that
between humans and automated scoring (Table S1), indicating
sufficient accuracy to bring samples enriched for each phenotype to
the attention of the researcher.

The phenotypes we chose were particularly challenging be-
cause their average penetrance was low (0.2–6.1%), and even the
strongest hits for some phenotypes contained �5% positive cells.
All phenotypes were, nonetheless, readily scored by our method.
Previous approaches (15, 19, 20) have succeeded on highly
penetrant phenotypes where positive control samples are known,
but none of the phenotypes in our study had positive control
samples available, and most were low-penetrance. We chose 4 of
the phenotypes in this study and retrospectively tested a positive
control-based method on them (Fig. S4). The method worked
well on the most highly penetrant, straightforward phenotype,
large spread cells (Fig. S4A), but was inferior on the other 3
phenotypes of greater morphological complexity and lower
penetrance, in some cases even failing to highly rank the training
samples (Fig. S4 B–D).

Overfitting is a concern when using machine learning algorithms,
but boosting variants are fairly resistant to it (28). Cross-validation
results (Fig. S5) show that this is also the case for our approach. The
classification accuracy is typically not significantly reduced as the
number of individual regression stumps forming a rule for a
phenotype increases. To increase the coverage of the training set

and guard against training to a too-narrow definition of a pheno-
type, it is useful to inspect images of the top-ranked samples (or
positive control samples, if available), in which positively classified
cells are marked. From these images, it is easy to identify false-
negative cells and add them to the training set during the iterative
training phase.

We considered whether a rule will generalize to new experi-
ments. A rule trained on one experiment is unlikely to be applicable
to experiments involving different assay protocols, cellular stains, or
image acquisition instrumentation, although with our approach, the
time required to generate a new rule for the new experiment is
minimal. For replicate experiments, creating a training set from one
replicate and applying the rule it generates to another replicate risks
negatively impacting its accuracy because of undetected experi-
mental variation (Fig. S6B). The more robust approach is to create
a training set spanning all replicates (Fig. S6A).

Lastly, we tested our method’s f lexibility by applying it to
another large-scale image set. Previously, 288 genes were
screened for a metaphase phenotype by RNAi in Drosophila by
using living-cell microarrays (33). In our previous work, we
identified cells in metaphase by empirically applying sequential
gates based on 4 measured features of the DNA stain of each cell.
This process took more than a week. With our new approach, we
identified metaphase nuclei and accurately scored the entire
screen within 4 h, of which only 1 h was hands-on time (Fig. S7
and Fig. S8). The top of the rank-ordered list of genes from the
screen (SI Text) contained widerborst (CG5643, the one hit in
our original study), as well as other cell-cycle-related genes, e.g.,
polo (CG12306) and microtubule star (CG7109). The gene most
deenriched for metaphase nuclei was Nima-related kinase 2
(Nek2, CG17256; ‘‘Nima’’ derives from ‘‘never in mitosis’’). As
was the case for complex human phenotypes (Fig. S4), providing
the positive control sample images directly to the machine
learning algorithm was unsuccessful (Fig. S9).

Discussion
Together, this work indicates that automated scoring of a wide
variety of morphologies can be accomplished quickly and easily,
even when a phenotype is rare in the WT population and positive
control samples are not available. Specifically, the approach is
scalable to large-scale, image-based screens (chemical or genetic) in
which multiple complex phenotypes are examined. Whereas screen-
ing for perturbations of general cellular functions like cell division
has yielded large networks of genes (14, 34), the ability to identify
more subtle and rare cellular morphologies should yield more
tightly focused families of genes worthy of study (35). In particular,
morphologies of unknown biological significance are likely to lead
to the study of entirely new pathways in the spirit of classic genetic
screens.

The approach described here is compatible with automated
image analysis systems and, importantly, is robust to the occasional
segmentation errors produced by such systems. Previous work has
demonstrated that machine learning algorithms can be successfully
trained by using all cells from positive and negative control samples
to create a training set, even for some phenotypes that cannot be
visually distinguished by humans (25). Here we showed that,
whereas this approach can be successful for highly penetrant
phenotypes (Fig. S4A), it is not suitable when the phenotype is less
penetrant (Fig. S4 B–D and Fig. S9). We have addressed these
challenging situations, thus enabling screens for low-penetrance
phenotypes that lack positive control samples. Even when positive
control samples are available, leveraging the user’s visual percep-
tion to select individual example cells helps prevent the machine
learning algorithm from focusing on aspects of morphology that are
irrelevant to the biological question at hand or from becoming
tuned to cells that display some complex combination of pheno-
types as the positive control samples (i.e., pleiotropic effects) rather
than the specific phenotype of interest.
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The machine learning approach presented here has been imple-
mented and released as the ‘‘Classifier’’ feature in an open-source
software package we developed previously for visualizing and
exploring data from image-based screens, called CellProfiler An-
alyst (33).

Methods
Algorithms and Software. The software packages used in this work, CellProfiler
and CellProfiler Analyst, are open-source (available from the Broad Institute at
www.cellprofiler.org). The image-analysis pipeline, which can exactly recreate
the analysis in CellProfiler, is provided along with a text description (SI Text).
Based on code from Torralba et al. (36), the Classifier functionality was developed
as a feature in CellProfiler Analyst for this study; its usage is described in a manual
and an online demonstration video (available from the Broad Institute at www.
cellprofiler.org/examples).

The time to compute a rule is on the order of a few seconds, and grows linearly
with training set size and the number of features. Using the rule to classify 8
millioncells inadatabasetakes�2min,withthesameordersofgrowth,primarily
limitedbydisk transfer speed,as thefulldatasetmustbereadtoclassifyeverycell.
Image processing times to identify and measure cells using CellProfiler are cur-
rently on the order of 10 s to several minutes per image, depending on the
particular experimental and image analysis used (for example, �2.5 min per
3-channel, 512- � 512-image on a 2.4-GHz Intel CPU with 8 gigabytes of RAM for
the human cell images in this study). Cluster computing prevents this from
becoming a bottleneck.

RNAi Screens, Images, and Cytological Profiles. Images used in the human
screenspresentedherehavebeenpreviouslydescribed(14).Cellswerestainedfor
DNA (Hoechst), actin (phalloidin), and phospho-histone-H3 serine 10 (antibody).
Approximately 5 separate lentiviral-delivered shRNAs were tested for each of

1,028 genes, mostly kinases and phosphatases, with 2 samples for each shRNA
(one with and one without the selection reagent for the shRNA, puromycin) and
with 4 images captured per sample. We used the samples treated with puromycin
(the selection agent for the shRNA vector) for the validation step shown in Figs.
3 and 4 because puromycin selection culls cells where the shRNA vector failed to
infect, leading to more homogeneous populations in each sample and because
puromycin affects phenotype penetrance in the WT population. Images (250 GB),
thedatabaseofcytoprofiles (20GB),andeachphenotype’s trainingsetofpositive
and negative example cells are available on request. Images and data used in the
Drosophila metaphase screen have also been previously described (33). Briefly,
there were 5 replicates of a cell microarray, and each array had 3 replicate spots
per gene, plus 256 negative control spots lacking an RNAi reagent.
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