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Abstract

The increasing prevalence of auto-
mated image acquisition systems is
enabling new types of microscopy
experiments that generate large
image datasets. However, there is a
perceived lack of robust image
analysis systems required to process
these diverse datasets. Most auto-
mated image analysis systems are
tailored for specific types of micros-
copy, contrast methods, probes, and
even cell types. This imposes signif-
icant constraints on experimental
design, limiting their application to
the narrow set of imaging methods
for which they were designed. One
of the approaches to address these
limitations is pattern recognition,
which was originally developed for
remote sensing, and is increasingly
being applied to the biology do-
main. This approach relies on train-
ing a computer to recognize pat-
terns in images rather than
developing algorithms or tuning
parameters for specific image pro-
cessing tasks. The generality of this
approach promises to enable data
mining in extensive image reposito-
ries, and provide objective and
quantitative imaging assays for rou-
tine use. Here, we provide a brief
overview of the technologies behind
pattern recognition and its use in
computer vision for biological and
biomedical imaging. We list available
software tools that can be used by
biologists and suggest practical ex-
perimental considerations to make
the best use of pattern recognition
techniques for imaging assays.

Introduction

Computer-aided analysis of microscopy

images has been attracting considerable

attention in the past few years, particularly

in the context of high-content screening

(HCS). The link between images and

physiology is well established, and it is

common knowledge that a significant

portion of what we know about biology

relies on different types of microscopy and

other imaging devices. Automated image

acquisition systems integrated with labo-

ratory automation have produced image

datasets that are too large for manual

processing. This trend led to a new type of

biological experiment, in which the image

analysis must be performed by machines.

Clearly, this approach is different than the

bulk of the microscopy performed for the

past ,400 years. However, while the

availability of automated microscopy, lab-

oratory automation, computing resources,

and digital imaging and storage devices

has been increasing consistently, in some

cases the bottleneck for high-throughput

imaging experiments is the efficacy of

computer vision, image analysis, and

pattern recognition methods [1]. Comput-

er-based image analysis provides an ob-

jective method of scoring visual content

independently of subjective manual inter-

pretation, while potentially being more

sensitive, more consistent, and more

accurate [2]. These advantages are not

limited to massive image datasets, as they

allow microscopy to be used as a routine

assay system even on a small scale.

An effective computational approach to

objectively analyze image datasets is

pattern recognition (PR, see Box 1). PR

is a machine-learning approach where the

machine finds relevant patterns that dis-

tinguish groups of objects after being

trained on examples (i.e., supervised

machine learning). In contrast, the other

approach to machine learning and artifi-

cial intelligence is unsupervised learning,

where the machine finds new patterns

without relying on prior training exam-

ples, usually by using a set of pre-defined

rules. An example of unsupervised learn-

ing is clustering, where a dataset can be

divided into several groups based on pre-

existing definitions of what constitutes a

cluster, or the number of clusters expected.

A review of machine learning in the

context of bioinformatics (as opposed to

imaging) can be found in [3].

Traditionally, analysis of digital micros-

copy images requires identifying regions of

interest (ROIs) or ‘‘objects’’ within the

images. Once a region is isolated from the

background, the resolution and dynamic

range afforded by digital microscopy

allows many types of measurements and

statistics to be collected about the object in

question, such as intensity, shape, size, and

position, as well as the number of objects

and their distribution [4]. This region

selection can be done manually by draw-

ing boxes or free-hand regions using an

interactive tool [5], or automatically using

computer algorithms known as segmenta-

tion algorithms [4,6]. While most image

analysis continues to rely on region

identification, PR can also be used to

process whole images or images tiled on a

grid without a prior region identification

step [7].

Traditional image processing is there-

fore predicated on the question, ‘‘can my

objects of interest be identified?’’. In

contrast, PR is predicated on the question,

‘‘can these groups of images be distin-

guished?’’. In this context, the input to a

PR algorithm may be an entire image, a

sub-image region identified with segmen-

tation algorithms, or simply image samples

in the form of rectangular tiles. Thus, in

contrast to selecting and tuning a segmen-
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tation algorithm, PR requires training a

computer to distinguish groups of images.

These groups correspond to experimental

controls, and the set of images within a

group encompasses the variation within

each control. Given these groups of

images, the machine can learn on its

own what aspects of the images represent

natural experimental variation and are

therefore irrelevant, and what aspects are

important for distinguishing the groups of

control images from each other [1,4,8].

This ability to sort image measurements

by their relevance to a given imaging

experiment allows the use of a great

variety of generic image description algo-

rithms that are not specifically related or

tuned to each imaging problem, potential-

ly making the collection of algorithms very

general. The selection of algorithms and

the rules for combining them are done

automatically as part of the machine-

learning process, eliminating the need for

a microscopist to select the set of imaging

algorithms to use, or adjust the parameters

with which to run them.

Images taken with phase contrast, differ-

ential interference contrast (DIC), or other

methods for visualizing gross morphology

are notoriously difficult for computers to

analyze because the perceptual model may

not be visually apparent, or is challenging

to encode in algorithms [9]. The types of

image measurements that can be used for

PR are not limited to what we can perceive,

model, and encode in segmentation algo-

rithms, making it possible to use automated

methods to analyze gross morphology

rather than being limited to specific probes,

or a priori perceptual models.

The applicability of PR in a specific

imaging experiment depends entirely

(and solely) on the availability and

distinguishability of control images.

Thus, a PR approach to an imaging

experiment is very closely tied to the

biological experiment itself rather than

intermediate measurements from image

processing, or familiarity with the algo-

rithms necessary to produce these mea-

surements. PR can be used in tandem

with segmentation algorithms when pos-

sible in order to exploit benefits provided

by both approaches. Except in a limited

sense, such as analyzing the confusion

matrices of classification experiments as

discussed in the Interpreting Image Classifi-

cation Output section, most PR approaches

do not yield the types of quantitative

results one gets from segmentation algo-

rithms. Instead, it can lead directly to a

qualitative experimental result, such as

finding the ‘‘hits’’ in a screen. In general,

PR is useful as an exploratory imaging

assay that is independent of any precon-

ceptions of the nature or existence of

morphological differences in the imaging

experiment. PR requires little effort or

expertise to try. It can be used to check

whether morphological readouts exist

and develop more specific imaging algo-

rithms if warranted.

In this review we describe the general

outline common to all PR systems used for

biological microscopy, and focus on tech-

niques and specific software packages that

have been used successfully in biological

image analysis. We discuss some of the

requirements of the experimental setup

that are necessary to take full advantage of

PR and point out some of the differences

between PR experiments and traditional

manual evaluation of microscopy images

or model-based image analysis.

Overview of Bioimage PR
Systems

Although there are many examples of

PR systems, the process can be summa-

rized in several steps (Figure 1).

As with traditional image processing

approaches based on object identification

alone, PR can also benefit from various

techniques to subdivide images into ROIs.

The three principal reasons for doing so

are to 1) reduce the number of pixels the

PR algorithm needs to consider all at once

to improve response time or increase

statistical power, 2) bias the PR algorithm

to process objects of interest rather than

background, and 3) center or align objects

that have inherent orientation. ROI de-

tection algorithms and tools are described

more thoroughly in the Finding Regions of

Interest section.

The second step is the extraction of

image content descriptors (image features),

which are values that describe the image

content numerically. These values can

reflect various texture parameters of the

image, the statistical distribution of pixel

intensities, edges, colors, etc. While the

dimensionality of the raw pixels can

typically reach ,1,000,000 (assuming a

microscopy image of 1000|1000 pixels),

the number of image features ranges

between a dozen to a few hundred. While

each pixel value describes the intensity at a

given X,Y position, each feature value

describes a specific image characteristic. A

more detailed description of the types of

features commonly used can be found in

the Computing Image Features section.

In the next step, the image features are

used to draw conclusions about the data.

Generally, PR methods select features and

potentially assign weights based on their

ability to discriminate the classes. The

refined feature set is then used to infer

rules for combining them in a classifier.

These two steps constitute the training

stage in PR, where the goal is to correctly

classify the training images. The trained

classifier is then tested on control images

that were excluded from the training stage.

This cross-validation is important to

establish the classifier’s ability to identify

new images, ensuring that it is not

restricted to recognizing images it was

trained with. More information about

feature selection and classification can be

found in the Feature Selection and Classification

section.

Finally, the results of image classification

need to be interpreted by the researcher in

an experimental context to reach a biolog-

ical conclusion. There are special consid-

erations in this interpretation specific to

Box 1. Pattern Recognition

N PR is the task of automatically detecting patterns in datasets and using them to
characterize new data. PR is a form of machine learning, which itself is a field
within artificial intelligence. Machine learning can be divided into two major
groups. In supervised learning, or PR, a computer system is trained using a set of
pre-defined classes, and then used to classify unknown objects based on the
patterns detected in training. In unsupervised learning there are no classes
defined a priori, and the computer system subdivides or clusters the data,
usually by using a set of general rules. An example of supervised learning is
automatic detection of protein localization, in which the computer system is
trained using images of probes for known sub-cellular compartments [10]. An
example of unsupervised learning is clustering an expression profiling
microarray experiment into groups of genes with similar expression patterns.

N Other approaches to PR include semi-supervised learning, which uses pre-
defined classes to find new similarity relationships and define new groups, and
reinforcement learning, in which decisions are improved iteratively based on a
feedback mechanism and specified reward criteria. In this educational article we
focus on the application of supervised learning to automated analysis of
microscopy image datasets.
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PR, which is further discussed in the

Interpreting Image Classification Output section.

Finding Regions of Interest

As discussed in the Overview of Bioimage

PR Systems section, the first step of

computer-aided image analysis is usually

to reduce the number of pixels considered

by the PR algorithm. The most labor-

intensive approach is to manually define

regions of interest. While in some cases

this can be the only option, this method

introduces bias and inconsistency, and is

too labor intensive to be practical for the

analysis of large-scale screens. In this case,

the definition of ROIs can be automated

by simply dividing the image into tiles

using a regular grid pattern. This simple

reduction in pixel number can increase the

throughput of the PR algorithms, as well

as provide greater statistical power by

considering a larger number of individual

tiles.

In cases where objects of interest can be

easily identified by segmentation algo-

rithms (e.g., fluorescently labeled cells or

structures), subsequent image analysis can

be more effective if only the regions of

interest are processed and analyzed, while

the background areas are left out of

consideration. Similarly to naive tiling,

rejection of biologically irrelevant areas

reduces the response time of the system. A

more important role for this type of ROI

detection is that it can potentially elimi-

nate the presence of artifacts that can add

noise, and degrade the efficacy of the

computer analysis. In cases where the

objects of interest are difficult to detect

among all the objects that appear in

the image, PR-based analysis can be

used to ‘‘learn’’ which of these objects

have biological meaning relevant to the

experiment.

Some implementations of segmentation

algorithms are designed for a specific type

of object (e.g., cells), and therefore do not

require intensive tuning of the system,

while other tools are more general, and

require adoption to the objects of interest.

Widely used methods for ROI detection

include global thresholding [11], water-

shed algorithms [12–14], model-based

segmentation [15], and contour methods

[16]. In some cases, automatic edge

detection can be used to segment regions

of interest [17].

A useful tool for cell segmentation is

the open-source software CellTracer [18],

which is written in Matlab and can

be downloaded at http://www.stat.duke.

edu/research/software/west/celltracer/.

Another powerful tool for ROI detection

is ITK (Insight Segmentation and Regis-

tration Toolkit) [19] (http://www.itk.

org/), which is an open-source package

designed to detect regions of interest in 2-

D and 3-D microscopy images, as well as

other types of biomedical imaging such as

MRI and CT. VTK [20] (http://www.

vtk.org/) enhances ITK with a graphical

user interface. GemIdent [21] (http://

www.gemident.com/) is a multi-purpose

tool for detection and segmentation of

objects of interest in color images, and

provides an interactive graphical user

interface that allows the user to tune and

optimize the detection. Another tool for

automatic detection of spot-like objects in

microscopy images is FindSpots [22],

which is based on the global thresholding

method, and is capable of detecting

objects in 2-D as well as 3-D images.

FindSpots is available as part of the OME

software package [23] (http://www.open

microscopy.org/). sephaCe [9] (http://

www.assembla.com/code/sephaCe/sub

version/nodes/) is a tool that applies

advanced edge and cell boundary detec-

tion to address the difficult problem of

cell segmentation in brightfield images. A

powerful tool for 3-D segmentation is

V3D-Neuron [24], which can visualize,

trace, and analyze 3-D images of

neurons.

A practical approach to ROI detection is

the popular ImageJ software (http://

rsbweb.nih.gov/ij/). ImageJ allows the use

of external plugins, which enhance it with

features that are not supported by ImageJ

built-in functions. Examples of ROI

detection and segmentation plugins devel-

oped for the ImageJ platform include

NeuronJ [25] (http://www.imagescience.

org/meijering/software/neuronj/) and Neu-

riteTracer [26] for working with images of

neurons, ITCN (http://rsbweb.nih.gov/

ij/plugins/itcn.html) for finding nuclei in

various cell and image types, a generic

watershed segmentation algorithm [12],

and many more listed at http://rsbweb.

nih.gov/ij/plugins/. A project called Fiji

(http://pacific.mpi-cbg.de/) repackages

ImageJ along with a selection of plug-ins

and other features useful for bioimage

processing.

Often, objects of interest have an

inherent orientation that is not preserved

by the imaging system. Examples include

polarized cells, as well as images of tissues

and whole organisms. In these cases, the

efficacy of PR can be improved if the

objects of interest are registered, so that the

orientation variance introduced by imaging

is eliminated. In some cases, objects may

differ not only in orientation, but also in

scale or local geometry, requiring positional

and rotational registration as well as local

morphing. Combined with the required

accuracy of segmentation algorithms to

identify landmarks, registration can be a

challenging task. Some software tools for

ROI detection and segmentation, such as

ITK, also offer tools for registration. An

application-specific example is the registra-

Figure 1. High-level architecture of bio-
image analysis systems.
doi:10.1371/journal.pcbi.1000974.g001
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tion of various images of Caenorhabditis

elegans nematodes. Normalization of these

objects for the purpose of image processing

can be performed by ‘‘straightening’’ the

worms and rotating them to a fixed

orientation [27].

Sophisticated segmentation algorithms

can greatly increase the signal to noise

ratio, but the perceptual models they

implement or the parameters used can

also lead to errors. When segmentation

errors are random (non-systematic), there

will be a corresponding reduction in the

signal to noise. Importantly though, these

errors can be correlated to the experimen-

tal question, leading to systematic bias and

skewing of the experimental results.

In some cases, the dataset includes a

large number of ROIs, and using all of

these images might severely slow down the

response time of the system due to the

computing resources required to compute

image features for high volumes of image

data, as will be explained in the Computing

Image Features section. In these cases, to

improve system response time, a subset of

these ROIs can be selected randomly for

classifier training. Some bioimage analysis

tools also use interactive user interfaces to

select the ROIs manually, and refine them

based on classifier performance. This can

be done iteratively, until the researcher is

satisfied with the classification results.

CellProfiler-Classifier provides an example

of this iterative selection and classification

refinement [28]. For 3-D images, objects

for classification can be selected and

annotated using tools such as OMERO

[5], VANO [29], and V3D [24], which

can allow ROI or image-based annota-

tions of large and complex 3-D microsco-

py images, including combinations of 3-D,

multi-channel, and time-lapse.

It is important to note that when using

segmentation software developed indepen-

dently of PR, a degree of integration with

PR-based software tools is required. Of-

ten, the segmentation results can be

exported as separate images that can be

straightforward to transfer to PR software

for subsequent analysis. In other cases, this

integration requires scripting or substantial

programming. Therefore, experimentalists

are encouraged to first consider software

packages developed specifically for PR in

microscopy images, providing a full start-

to-finish solution. These comprehensive

software tools are described in the Software

Tools section.

Computing Image Features

After reduction of the image size by

ROI selection, raw pixel data is usually

still not appropriate for direct processing

by PR algorithms. Instead, the pixel data is

further summarized for its ‘‘image con-

tent’’ using a set of feature extraction

algorithms. Each algorithm reads image

pixels and outputs one or more numerical

values that describe various aspects of the

image. These algorithms are usually very

general in that they can operate on any set

of pixels without specifying any parame-

ters. The types of image features vary

depending on the PR software package,

but generally consist of texture descriptors,

statistical distribution of pixel values,

shape and edge features, coefficients of

polynomial expansions representing the

image, and others.

Since there is no ‘‘typical’’ microscopy

image or experiment, and the types of

image content descriptors are virtually

unlimited, there is no standard set of

feature extraction algorithms. Additional-

ly, different image features can be relevant

to different experiments—even when they

are based on the same types of images.

Finally, image features calculated by

computers can be almost arbitrarily de-

tailed, and can describe patterns that

people cannot readily perceive. The ability

to detect differences between images

automatically without the requirement

for a pre-conceived perceptual model is

an important advantage of PR for bio-

image informatics. Therefore, in most

bioimage PR systems, a larger set of image

content descriptors is computed than is

ultimately used after feature selection and

training. This is done to cover a variety of

possible morphological aspects of the

images and preserve the generality of the

approach [10,28,30].

As low-level image features are not

related to any specific imaging problem,

they have little utility outside of PR. Thus,

modules for computing image features are

normally a part of broader applications,

and are not distributed as independent

software products. Higher-level tools such

as CellProfiler [31], wndchrm [32], and

Protein Subcellular Location Image Data-

base (PSLID) [33] apply image feature

extraction as an intermediate step, but the

values can be exported to third party tools.

Feature Selection and
Classification

After the image features are computed

for all images in the dataset, the samples

can be classified or assessed for similarity

by using PR tools. Image classification is a

task in which the computer system auto-

matically assigns images to one of several

user-defined image classes. An image class

is simply a collection of images from an

experimental control. Classification is nor-

mally done by first splitting the dataset

into training and test image pools. The

training data are used to automatically

define the classification rules, and the test

data are used to assess the effectiveness of

these rules, and their ability to consistently

reflect the data. Typically, several train-

ing/testing experiments are done auto-

matically by randomly splitting the dataset

and running multiple trials, as described in

the Experimental Considerations for Effective PR

section.

Many of these image features are

expected to be irrelevant to the specific

imaging problem being considered and

contribute only to noise, while others

contribute varying degrees of discrimina-

tive power to the classifier. Selection of

relevant features is generally performed

automatically using one of the methods

described below. The automated compu-

tation and selection of image features

without user intervention or parameter

tuning is a key factor allowing robust

automation of PR and its adaptability to

virtually any image type.

There are two major approaches to

feature selection: filters and wrappers. The

filtering approach typically uses statistical

methods to process the entire set of

features to select those most informative.

The selection is independent of the

classifier ultimately used in the imaging

experiment, and thus the features selected

are not specific to the downstream classi-

fier. Wrapping, in contrast, is based on

selecting subsets of features by testing

them in a classifier. Thus, wrapping can

select features specific to the downstream

classifier being employed.

A simple example of the filtering

approach is computing the Fisher score

for each feature, and rejecting a certain

percentage of the features with the lowest

scores. The Fisher score is a ratio of the

variance in the feature value between

classes to its variance within classes, giving

features with high discriminative power

higher scores. This approach is imple-

mented in the wndchrm image analysis

tool (available at http://ome.grc.nia.nih.

gov/wnd-charm/), where the Fisher scores

are also used as feature weights. While

providing accurate results for a variety of

image types [34], a potential downside of

this method is feature redundancy due to

correlations in feature values between

seemingly unrelated feature extraction

algorithms. Selecting more than one

image feature from a group of inter-

correlated features will not add to the

overall effectiveness of the feature set, and
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may contribute to noise by over-represent-

ing a certain type of image content. An

effort to address this issue directly is the

minimum redundancy maximum rele-

vance (mRMR) algorithm [35], available

at http://penglab.janelia.org/proj/

mRMR/.

Another approach is remapping, where

the original feature space is substituted

with another of lower dimensionality and

possibly improved separability. A common

transformation used in several areas of

bioinformatics is principal component

analysis (PCA) that has been successfully

used for the analysis of DNA microarray

data [36], and has also been applied to

image feature reduction [37]. PCA maps

the feature space into a smaller number of

mutually orthogonal principal compo-

nents. While the primary criterion of

PCA is preservation of data variance,

other techniques have been proposed that

use different principles for the purpose of

dimensionality reduction. One such family

of methods is manifold learning, where a

manifold [38] is assumed to be embedded

in the higher dimensional feature space.

Determining this manifold effectively im-

plements a non-linear transformation into

a smaller sub-space. There are several

additional algorithms and implementa-

tions for these transforms, including iso-

map [39], local linear embedding [40],

graph embedding [38], and others. Un-

fortunately, the public availability of

software that use these techniques is

currently lagging, and where available,

the software requires additional program-

ming to be practically useful. Examples of

implementations available include Matlab

libraries for ISOMAP (http://isomap.

stanford.edu/), a demonstration example

of several manifold algorithms with a

graphical user interface (http://www.

math.ucla.edu/,wittman/mani/), as well

as a Matlab toolbox for dimensionality

reduction containing a mixture of linear

and non-linear algorithms (http://ict.

ewi.tudelft.nl/,lvandermaaten/Matlab_

Toolbox_for_Dimensionality_Reduction.

html). Several feature selection and trans-

formation techniques for identifying sub-

cellular organelles are compared in [37],

but to date, a systematic analysis of

manifold learning approaches applied to

biological imaging problems has not been

attempted.

Wrapping selects features based on their

actual performance in the classifier, in

many cases providing better feature selec-

tion and greater classification accuracy

than filtering. It should be noted that in

most cases filtering is significantly faster

than wrapping, which relies on running

many iterations with different subsets of

the feature bank. A collection of several

wrapping methods is available through the

ToolDiag software suite, that can be

downloaded at http://sites.google.com/

site/tooldiag/. Another useful tool for

feature selection and classification is Ra-

pidMiner [41] (http://www.rapidminer.

com/), which provides various feature

selection and classification algorithms with

a graphical user interface environment.

WEKA [42] is another open-source utility

that provides a rich set of classification and

feature selection tools, and can be down-

loaded at http://www.cs.waikato.ac.nz/

ml/weka/.

Classifier training automatically deduc-

es rules for combining the most informa-

tive features into a trained classifier that

can be used to associate unknown images

with the user-defined classes. One of the

simplest types of classifiers is nearest-

neighbor, where the class of the unknown

image is determined from the training

image with the most similar feature values.

WND (a part of WND-CHARM [30]), is a

variation of this approach where the

training images are used to model a

probability distribution for each class.

One of the first applications of PR

classifiers to biological imaging [10] used

neural networks for identifying sub-cellular

organelles. The current implementation of

this approach is in PSLID [33]. Another

classification approach is GentleBoosting

[43], which is used by CellProfiler [28].

More recently, support vector machines

(SVMs) [44] have become popular in

biological image processing as well as PR

in general [45]. This type of classifier is

used in Enhanced CellClassifier [46], as

well as in an analysis of drug response in

single cells [47]. An implementation of

SVM is SVMlight [48] (http://svmlight.

joachims.org/), and SVMperf [49], which

can be downloaded at http://svmlight.

joachims.org/svm_perf.html. These tools

also provide a user interface and can be

used as independent tools, as opposed to

some other available SVM libraries such

as LIBSVM [50], which are meant to be

integrated into other programs and thus

require programming skills. Another use-

ful software package that offers a wide

selection of classification methods is the

ToolDiag PR toolbox.

Most classifiers reported in the literature

are tested using a relatively low number of

classes, typically not more than a few

dozen. Biological ontologies, however, can

extend to thousands of terms, and if they

are used as the basis for classification, the

number of classes can increase dramati-

cally [51–53]. One approach to working

with large numbers of classes is to

reformulate the classification problem as

a system of classifiers, each operating on a

small set of classes [54]. Some types of

classifiers [30] do not appear to be

negatively affected by even a thousand

classes (L. Shamir, unpublished data using

the FERET dataset from NIST, consisting

of 994 classes; [55]). In some cases, it is

also possible to exploit estimates of class

similarity (see the Interpreting Image Classifi-

cation Output section below) to cluster a

large set of classes into a smaller subset

[7,32].

Interpreting Image
Classification Output

The most basic piece of information

obtained when validating a classifier is the

classification accuracy. Determining this

requires reserving a pool of test images

that were not used for training, but whose

class is known. Classification accuracy is

measured by the number of test images

that were classified correctly, divided by

the total number of images that the

classifier attempted to classify. This num-

ber reflects the ability of the classifier to

accurately associate a test image with its

correct class. Clearly, a higher classifica-

tion accuracy indicates that the image

classifier is more informative, and can

discriminate between images that belong

in different classes. However, as explained

in the Experimental Considerations for Effective

PR section, the classification accuracy itself

sometimes does not have any biological

meaning, and can lead to false conclusions

unless analyzed carefully and tested

against the appropriate controls.

In binary classification, the accuracy is

often reported in terms of sensitivity and

specificity, which are commonly used in

disease diagnosis. The sensitivity of a

classifier is defined as the proportion of

true positives that were correctly detected

by the classifier as positives, and the

specificity is defined as the proportion of

the negatives that were correctly classified

as negatives. Other performance metrics

for binary classifiers include the false

positive rate (FPR) and the false negative

rate (FNR). A thorough discussion about

performance metrics for binary classifiers

can be found in [56].

A more informative output of a classifier

validation experiment is the confusion

matrix (see Table 1). Each cell contains

the number of test images known to be

members of the class specified by the row

label that were classified as the class

specified by the column label. The number

of correctly classified images for each class
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is found on the diagonal, and the cells off

of the diagonal report mis-classifications.

Thus, the overall classification accuracy is

the total in the diagonal cells divided by

the total in all of the cells.

The confusion matrix also allows esti-

mating the degree of similarity between

classes. For instance, if the confusion

matrix shows that the image classifier has

a high degree of confusion between a pair

of classes in a given row, it is an indication

that these two classes are more similar to

each other than the other classes in the

row. These similarities can have interest-

ing biological implications. Depending on

the classifier and the imaging problem,

however, these similarities can also be a

property or limitation of the classifier itself.

Therefore these types of similarities need

to have independent confirmation—either

biological, or using a different approach to

PR, and ideally both.

In some cases, the differences between

the classes reflect an inherent order. For

instance, if each successive class is a

treatment with an increasing dose, or a

time course as in Table 1, the confusion

between neighboring pairs of cells in a row

is expected to be higher than cells farther

apart. In this case, the highest value of

each row in the confusion matrix is

expected to be on the diagonal, and the

other values in each row should decrease

for cells further away from the diagonal.

Experimental Considerations
for Effective PR

Experiments that utilize PR for micros-

copy image analysis introduce several

important considerations. As described in

the Computing Image Features and Feature

Selection amd Classification sections, the

image features are selected automatically

by their discriminative power, and the

classification rules are determined by the

system. Therefore, if two sets of images

have biologically irrelevant differences

between them (i.e., due to systematic

errors), the PR analysis could classify the

two sets accurately, but the classification

would be based on artifacts. Image

analysis using PR can discriminate be-

tween images taken using different micro-

scopes, objectives, cameras, etc., and

potentially lead to false conclusions. In

addition, it can also discriminate images

taken by different experimentalists. For

example, if two different treatments are

studied, and images for each treatment are

collected by a different person, the exper-

imenter’s acquisition parameters (which

could be subjective) can lead to a detect-

able difference between the sets of images

where no biological difference exists.

The potential for observer bias skewing

PR results means that little or no quality

control should be done during manual

acquisition or subsequent to automated

acquisition. Traditionally, images are se-

lected manually for being representative of

the biological treatment. In contrast, when

applying PR, it is the entire set of images

for a particular treatment that represent

the class, rather than individual images.

Manual selection of images introduces

considerable observer bias, which may

skew the PR results.

Since image analysis using PR is

sensitive to artifacts, image collection

should be as consistent as possible to

reduce the number of non-biological

differences. For this reason, it is important

to collect control images in every session of

image collection or for each experimental

batch. Control images can be images of

subjects that do not reflect any biological

differences (e.g., untreated cells). If the

classifier is able to differentiate between

the sets of control images from the

different sessions or experimental batches,

the analysis may be affected by artifacts. If

the classifier is not able to differentiate

between the sets of control images, but can

classify between the different treatments,

then it can be deduced that the different

treatments are reflected in the image

content.

Consider a classifier that can differenti-

ate between biologically equivalent con-

trols as well as between treatments. For

example, an accuracy of 55% between

controls compared to 85% between treat-

ments indicates that though systematic

errors are present, the biological signal

predominates. Here, the relative classifi-

cation accuracy between the two can be

compared and the classification result can

be accepted because the difference in

accuracy is sufficiently great. A better

approach is to make unavoidable system-

atic bias non-systematic. For example, if

two researchers must collect data, it is

better for each researcher to collect the

entire set of treatments so that their data

can be equally pooled into classes for

classifier training. The effectiveness of this

approach can be confirmed experimental-

ly by testing the classification accuracy of

acquisition controls from the different

experimenters pooled together.

Image classifiers differentiate image

classes based on the strongest morpholog-

ical signal, which for various reasons may

not be of interest to the experimenter. An

example of this is a cell growth effect that

is not of interest combined with a

morphological effect that may be of

greater interest. One option for eliminat-

ing the growth effect is to use segmenta-

tion to identify individual cells followed by

PR on classes composed of balanced cell

numbers. When segmentation is not

possible or undesirable, an alternative is

to force the classifier to disregard effects

that are considered unimportant. One

example of this was discussed above,

where data collected by different research-

ers is mixed together in each of the defined

classes. An undesired growth effect can

similarly be eliminated from consideration

by defining each experimental class using

several different cell densities. A third

option was used by our group to reduce

variation between experimenters [57], as

well as eliminating recognition of individ-

ual mice when analyzing the gender or age

of liver sections [58]. Here, we trained a

classifier to discriminate classes composed

of the artifact we wanted to eliminate (i.e.,

images collected by one experimenter

versus images collected by someone else;

liver sections from individual mice to train

a one mouse per class classifier). We

eliminated the undesired classification

signal from the experimental classifier by

Table 1. Confusion Matrix for Classifying H&E-Stained Mouse Liver Sections by Age.

1 Month 6 Months 16 Months 24 Months

1 month 245 22 43 10

6 months 218 719 117 66

16 months 47 18 225 30

24 months 73 99 227 705

doi:10.1371/journal.pcbi.1000974.t001
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subtracting the feature weights of the

artifact classifier from the experimental

one. For mouse livers, we were able to

show that this corrected classifier could

resolve gender equally well, but could no

longer identify individual mice [58]. Sim-

ilarly, using this approach to eliminate a

growth effect would involve training an

artifact classifier composed of classes with

different cell densities, where each class

contained the full range of experimental

effects. This type of correction is highly

dependent on the type of classifier being

used, and is not feasible in most types of

classifiers.

When testing a classifier for its ability to

differentiate between sets of images, the

classification accuracy should be measured

in several runs, where different images are

used for training and testing in each run.

These multiple trials test whether the

classifier’s performance is overly depen-

dent on the specific images used in

training. When the number of control

images is extremely limited, validation can

also be performed in a ‘‘leave one out’’ (or

round-robin) manner, where training is

performed using all but one of the images,

and the left-out image is used to validate

the classifier. This is normally systemati-

cally repeated, such that each image in the

dataset is tested in turn.

It should also be noted that it is

important to have the same number of

training images in each class to avoid

potential bias caused by an unbalanced

image distribution. If the classifier was

capable only of random guessing, then it

should assign test images to the defined

classes with equal probability. If one of the

training classes was much larger than the

others, a classifier may assign test images

to the larger class at a rate higher than

expected for random guessing, while the

smaller classes would be assigned with a

less-than-random probability. There are

several mechanisms that could lead to this

result, and some classifiers are more prone

to this bias than others. The safest

approach is to use the same number of

images in each class for training. If this is

not practical, a negative control experi-

ment can reveal if the classifier suffers

from this bias. In this case, the class

assignments of the training images should

be randomly scrambled, and the resultant

classifier should be checked to report the

expected random distribution of class

assignments.

While it is important to train a classifier

using an equal number of images per class,

using the same number of test images can

also be important to obtain an unbiased

assessment of classifier performance. For

instance, if a classifier of two classes has 40

test images of class A and 10 test images of

class B, correct classification of all class A

images will lead to an accuracy of 80%,

even if the classifier misclassified all test

images of class B. These results might

mislead the experimentalist to believe that

the classifier is performing adequately,

even though it classifies all images as class

A. Another approach to address this

problem is to measure the mean classifi-

cation accuracy for each class separately

[32] rather than relying solely on the

overall percentage of images that were

classified correctly. For instance, in the

case above, the 100% accuracy of the test

images of class A will be balanced by the

0% accuracy of class B, providing a

per-class average classification of 50%,

clearly indicating that the classifier does

not work.

The image classifier must be trained

with a sufficient number of sample images

for each of the predefined classes. There-

fore, an experiment that is based on PR

requires a significantly larger number of

images than an experiment in which the

conclusions are made by manual inspec-

tion or by the use of segmentation tools

alone. Normally, accuracy increases as the

training set gets larger, eventually reaching

a plateau where the classifier is said to be

‘‘saturated’’. This number can be deter-

mined empirically by running the classifier

repeatedly with different numbers of

training images, plotting the classification

accuracy against the number of training

images. This classifier analysis can also be

used to determine whether poor classifica-

tion performance is due to insufficient

training images, or due to the classes being

indiscernible by the chosen classifier.

The number of training images required

for accurate classification can vary de-

pending on the difficulty of distinguishing

the classes, and the variability within each

class. In our experience with wndchrm, if

the classes are easily distinguishable by eye

and the images within classes are visually

consistent, generally no more than a dozen

images are required for training. An

extreme example is identifying binucleate

phenotypes. Here a classification accuracy

of 98% can be achieved using a single

training image. In contrast, our study of C.

elegans muscle degeneration throughout

lifespan [57] used 85 training images for

each of seven classes, and could have used

more. In this case, human observers could

reliably distinguish only very young worms

from very old ones. In cases where smaller

training sets can provide reasonable per-

formance, using larger training sets was

not found to be deleterious.

Software Tools

While there are numerous publicly

available stand-alone software tools that

can perform specific tasks in the process of

PR-based image analysis such as segmen-

tation, feature selection, classification, etc.,

using these together may require program-

ming skills for their integration. Fortunate-

ly, some software packages have been

developed to provide a start-to-finish

solution for bioimage analysis and HCS,

and are often equipped with user-friendly

graphical user interfaces targeted at bench

biologists. Unfortunately, not all PR soft-

ware is well integrated and user friendly,

and in these cases some additional help

should be sought from bioinformaticians,

or the growing number of biologists with

significant expertise in computing and

information technology.

The software discussed in this section

was selected based on four parameters:

usability without further software develop-

ment, integration of PR techniques dis-

cussed above, an established user commu-

nity, and open-source code. Although

availability of source code would seem to

be of little consequence to non-program-

mers, it is an important consideration. The

foremost reason scientifically is that at least

in principle, the implementation of the

algorithms by the software is independent-

ly verifiable. There are also practical

considerations. If the original authors

abandon the software project without

providing the source code, then the

software may soon stop running on new

versions of operating systems and hard-

ware. If the software was an integral part

of the processing pipeline, then previous

experiments may need to be repeated with

a new software package in order to

compare them to new results. The avail-

ability of source code usually also means

that there is a widely distributed pool of

experts that can modify the software or

just keep it updated. Even when this pool

doesn’t exist, a professional programmer

can be hired to fix, modify, or update the

software if this becomes necessary.

In this section we mention one of the

most popular image processing programs,

ImageJ, and discuss four complete systems

for biological imaging that rely on PR

techniques: CellProfiler-Classifier, PSLID,

wndchrm, and CellExplorer, listed in

Table 2. Although ImageJ is not specifi-

cally designed for PR, there are many

plug-ins available for segmentation, which

can be valuable for data reduction prior to

classification as discussed above. Manipu-

lation of image groups is an integral part of

analysis by PR, and ImageJ does not
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provide a mechanism for associating

images with each other. The grouping of

images would allow consequent grouping

of the ROIs produced by various segmen-

tation plug-ins. A PR plug-in could then

use these multi-image ROIs to define

classes for training. There are several

scripts available for batch processing

images together in ImageJ, so the notion

of image groups may be implemented in

the future.

The PSLID [33] was the first applica-

tion of PR for microscopy images [59].

This project aims to eventually enumerate

and discern all subcellular localization

patterns. Even though this may seem quite

specialized, localization is not limited to

identifying organelles, but can be used to

describe any type of subcellular distribu-

tion for a protein, stain or other biomark-

er. PSLID has evolved over the years to

analyze patterns in multiple fluorescence

channels as well as in 3-D and over time.

PSLID can be used with a database to

manage large image collections. A full

installation can also include a Web service

to perform image-based or localization-

based searches.

The goal of the CellProfiler project is to

provide a user-friendly image processing

environment for HCS [60]. In HCS, high-

resolution imaging of cells is used as an

assay in a screen of chemical compounds

or RNAi libraries. These experiments

easily involve tens or hundreds of thou-

sands of images, where manual scoring is

impractical. Similarly to ImageJ, CellPro-

filer includes tools to identify (segment)

cells and nuclei, and report various

statistics on the objects found in an image.

In contrast to ImageJ, CellProfiler is

designed around image processing pipe-

lines, where many thousands of images

can be analyzed in batch. The recent

addition of CellProfiler-Classifier [28]

introduces PR techniques to classify cells

into user-defined phenotypes. Interesting-

ly, CellProfiler-Classifier can also find cells

that do not fit into any of the predefined

phenotypes, making it useful for identify-

ing rare or low-penetrance phenotypes.

Similarly to PSLID, CellProfiler places

constraints on how the imaging experi-

ment is conducted—mainly that the cells

must be easily identifiable by the segmen-

tation algorithms used. Generally this

requires staining with a fluorescent cyto-

plasmic marker as well as a fluorescent

nuclear marker in addition to any markers

being used in the actual experiment. In

light of these considerations, the work

done with CellProfiler and PSLID thus far

is limited to fluorescence microscopy. In

contrast to PSLID, CellProfiler is meant to

be used on a user’s desktop rather than

provide a centralized Web-based service,

so it is somewhat easier to install and use.

The WND-CHARM [30] project was

initiated to provide PR tools for the

analysis of a broad variety of image types,

and provide a means to explore different

classifiers trained by grouping the same

images in various ways. This software is a

command-line tool [32] that processes

images arranged into folders representing

the image classes, and produces reports in

HTML format that are viewable in any

Web browser. Unlike PSLID and Cell-

Profiler, WND-CHARM has been exten-

sively tested on a variety of image types,

including phase-contrast, differential-inter-

ference contrast, and histological stains, as

well as fluorescence microscopy [34].

Other than dividing the images into tiles,

WND-CHARM does not supply any

segmentation tools of its own, although

any software that can produce cropped

images of segmented cells can be used to

provide images to WND-CHARM. De-

spite the lack of segmentation tools, WND-

CHARM has been shown to accurately

score imaging assays that have been

traditionally analyzed by segmentation

algorithms, such as scoring a screen for

binucleate phenotypes with 100% accura-

cy [34]. WND-CHARM is self-contained

and does not rely on extensive external

math software such as Matlab, or database

infrastructure such as Oracle and MySQL.

This portability allows it to be easily

integrated into other software that pro-

vides segmentation and database function-

alities.

Another useful tool for automatic anal-

ysis of biological images is CellExplorer

[61]. CellExplorer was designed for the

analysis of C. elegans images, but was also

found effective for other model organisms

such as drosophila. The package includes

advanced segmentation, annotation and

straightening algorithms [62] of 3-D

microscopy images. The segmented nuclei

can also be classified automatically using

an SVM classifier. CellExplorer is freely

available for download; however, it re-

quires the installation of Matlab, which is

commercial software.

The software tools described above and

the segmentation tools described in the

Finding Regions of Interest section can be

Table 2. Publicly Available Image Analysis Software Tools Employing or Useful for PR in Biological Microscopy.

Tool
ROI
Detection Classification

Graphical
User
Interface

Open
Source Language Platforms

Required
Software Microscopy Web Site

ImageJ Yes
(plugin)

n.a. Yes Yes Java Linux,
MacOS
Windows

None All http://rsbweb.
nih.gov/ij/

PSLID/SLIC Yes ANN, SVM No Yes Matlab, C,
Python

Linux Postgres,
tomcat
Matlab

Fluorescence http://pslid.cbi.
cmu.edu/release/

CellProfiler Yes GentleBoosting Yes Yes Python,
Matlab

Linux,
MacOS
Windows

None Fluorescence http://www.
cellprofiler.org/

wndchrm No WND No Yes C Linux,
MacOS
Windows

None All http://ome.grc.nia.
nih.gov/wnd-charm/

CellExplorer Yes SVM Yes Yes Matlab Linux,
MacOS
Windows

Matlab Confocal/
3-D

http://penglab.
janelia.
org/proj/cellexplorer/

doi:10.1371/journal.pcbi.1000974.t002
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tested using publicly available biological

image datasets, which include images of

different organisms acquired using differ-

ent types of microscopy, magnifications,

etc. Some useful publicly available image

datasets include the PSLID datasets

(http://murphylab.web.cmu.edu/data/),

the IICBU benchmark suite [34] (http://

ome.grc.nia.nih.gov/iicbu2008/), and the

Broad Bioimage Benchmark Collection

http://www.broadinstitute.org/bbbc/.

Discussion

In this review we describe the basic

concepts, terminology and software tools

for PR-based imaging assays for biology.

The information provided is directed

towards the bench scientist looking for an

alternative to traditional image processing

approaches. Although most of the current

applications of PR are used for analyzing

very large image datasets (e.g. PSLID,

CellProfiler-Classifier [28,33]), these tech-

niques can be applied just as easily to more

conventional imaging assays performed in

non-specialist laboratories. The principal

advantage of the approach is its potential

for processing a broad variety of image

types without requiring customized soft-

ware or parameter tuning for each imag-

ing experiment.

The ability to compare images to each

other regardless of image type can lead to

the discovery of new knowledge from

existing data. General sequence compari-

son algorithms such as BLAST have

transformed the archiving and retrieval

of sequence data in public repositories

such as GenBank into a field (genomics)

where new knowledge is routinely synthe-

sized from existing sequence collections.

By analogy, the integration of generalized

image comparison algorithms with large,

diverse, and well-annotated public image

repositories is an essential step toward

more complete data extraction from

biological images. For example, metadata

fields used to annotate images either

manually or by using specialized algo-

rithms can serve as the basis for defining

training classes for PR algorithms. The

resulting classifiers can then annotate

images where these fields haven’t been

defined. While this process can be fully

automated, the tools developed for this

approach can also be used interactively to

pose questions about potential new rela-

tionships within these image collections.

Although the techniques outlined in this

review can lead to general image compar-

ison algorithms, image data poses several

challenges that are only now beginning to

be addressed: quantitative image compar-

isons within multiple contexts, relevant

ranking algorithms, and integrated image

repositories. Context can be understood in

text searching by considering the query

‘‘Orange’’. The results of this query will

depend on whether the context is colors,

fruit, computer companies, or cellular

service providers. This level of ambiguity

is typical for image-based queries where

every image can be viewed in several

distinct contexts. The practical implication

for PR is that a given image in a repository

may be used for training several different

classifiers, or alternatively a group of

unrelated classifiers may analyze an image

along several distinct contexts. Search

interfaces typically allow only a limited

specification of context if they allow one at

all (e.g., Google Images, Videos, Maps,

News, etc.). This is not adequate for

image-based search due to the high degree

of ambiguity in the search context, the

difficulty of defining an implied context,

and its complete dependence on the

experimental question being asked.

A relevant ranking algorithm is a key

characteristic of a useful search interface

because the results most relevant to the user

are presented first. In scientific image-based

searching, the ranking of search results should

be based on image similarity measured along

one or more biologically relevant contexts,

specified by the user. Bisque and PSLID

provide image-based search algorithms that

return sets of images from the database that

are most similar to the query image.

However, it is not possible to refine the

search context (i.e., similar in what way?), and

the biological relevance of the result ranking

cannot be easily evaluated. Quantitative

image similarity is an important tool for

imaging assays such as dose-response, time

courses, and comparisons of phenotypes. In

addition, measures of similarity can form the

basis for clustering algorithms, where new

groupings of images can be discovered based

on existing or related contexts using objective

statistical criteria. PR techniques have been

previously used to quantify image similarity

within an experimental context. For example,

a mis-classification rate was used to measure

cellular response to varying drug doses [47],

and a direct measurement of similarity using

a linear classifier was used to measure

sarcopenia in the C. elegans pharynx [57].

Currently, direct measurements of contextu-

alized image similarity using general PR

techniques is an area of active and ongoing

research.

Ultimately, for image informatics to

mature, it requires both contextual image

comparison algorithms and fully integrated

image repositories. The last decade has

seen the creation of several specialized

image repositories, some examples of which

include the Visible Human Project (http://

www.nlm.nih.gov/research/visible/visible_

human.html), the Biomedical Informatics

Research Network (BIRN, http://www.

birncommunity.org/), the cancer Biomedi-

cal Informatics Grid (caBIG, https://cabig.

nci.nih.gov/), the JCB Data Viewer (http://

jcb-dataviewer.rupress.org/), and a new

initiative called The Cell: An Image Library

(http://cellimagelibrary.org/). Currently,

these are collections of images that can be

searched solely by their annotations and

used to exemplify various biological process-

es and features. The software infrastructure

for these image repositories has matured in

parallel over the past decade from early

projects such as OME [63,64] and PSLID

[33] to projects like Bisque [65] and

OMERO [5] that are maintained by full-

time developers and used by an increasing

number of imaging labs. These types of

image data management systems are pri-

marily concerned with the definition and

structure of imaging metadata, and provide

interfaces for annotation, search, and brows-

ing. Furthermore, these systems allow que-

ries based either on comparisons between

entered text and textual annotations in the

database, or image features extracted from a

query image compared to those of the

archived images. The integration of image

repositories like these with universal, con-

textualized image comparison algorithms

will substantiate the premise of image

informatics: that pre-existing image datasets

can be analyzed in-silico to find new

relationships between images, leading to

new knowledge and discovery.
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