TDI Publications 2014

Wang J, Knapp S, Pyne NJ, Pyne S, Elkins JM. 2014. Crystal Structure of Sphingosine Kinase 1 with PF-543. ACS Med Chem Lett, 5 (12), pp. 1329-1333. | Citations: 32 (Scopus) | Show Abstract | Read more

The most potent inhibitor of Sphingosine Kinase 1 (SPHK1) so far identified is PF-543. The crystal structure of SPHK1 in complex with inhibitor PF-543 to 1.8 Å resolution reveals the inhibitor bound in a bent conformation analogous to that expected of a bound sphingosine substrate but with a rotated head group. The structural data presented will aid in the design of SPHK1 and SPHK2 inhibitors with improved properties.

Bowles EJ, Schiffner T, Rosario M, Needham GA, Ramaswamy M, McGouran J, Kessler B, LaBranche C, McMichael AJ, Montefiori D et al. 2014. Comparison of neutralizing antibody responses elicited from highly diverse polyvalent heterotrimeric HIV-1 gp140 cocktail immunogens versus a monovalent counterpart in rhesus macaques. PLoS One, 9 (12), pp. e114709. | Citations: 8 (Web of Science Lite) | Show Abstract | Read more

Eliciting neutralizing antibodies capable of inactivating a broad spectrum of HIV-1 strains is a major goal of HIV-1 vaccine design. The challenge is that envelopes (Envs) of circulating viruses are almost certainly different from any Env used in a vaccine. A novel immunogen composed of a highly diverse set of gp140 Envs including subtypes A, B, C, D and F was developed to stimulate a more cross-neutralizing antibody response. Env heterotrimers composed of up to 54 different gp140s were produced with the aim of focusing the response to the conserved regions of Env while reducing the dominance of any individual hypervariable region. Heterotrimeric gp140 Envs of inter- and intra-subtype combinations were shown to bind CD4 and a panel of neutralizing monoclonal antibodies with similar affinity to monovalent UG37 gp140. Macaques immunized with six groups of heterotrimer mixtures showed slightly more potent neutralizing antibody responses in TZM-BL tier 1 and A3R5 tier 2 pseudovirus assays than macaques immunized with monovalent Env gp140, and exhibited a marginally greater focus on the CD4-binding site. Carbopol enhanced neutralization when used as an adjuvant instead of RIBI in combination with UG37 gp140. These data indicate that cross-subtype heterotrimeric gp140 Envs may elicit some improvement of the neutralizing antibody response in macaques compared to monovalent gp140 Env.

Gardie B, Couve S, Ladroue C, Laine E, Mahtouk K, Guegan J, Gad S, Le Jeune H, Lecomte B, Pages J-C et al. 2014. A Comprehensive Study of the VHL-R200W Chuvash Polycythemia Mutation Reveals a Gradual Dysregulation of the Hypoxia Pathway in Oncogenesis BLOOD, 124 (21), | Citations: 1 (Web of Science Lite)

Thanasopoulou A, Dumrese K, Picaud S, Fedorov O, Knapp S, Schwaller J. 2014. Targeting Aberrant Self-Renewal of Leukemic Cells with a Novel CBP/p300 Bromodomain Inhibitor BLOOD, 124 (21),

Hadzijusufovic E, Albrecht-Schgoer K, Huber K, Grebien F, Eisenwort G, Schgoer W, Kaun C, Herndlhofer S, Theurl M, Cerny-Reiterer S et al. 2014. Further Evaluation of Pro-Atherogenic and Anti-Angiogenic Effects of Nilotinib in Mice and in Patients with Ph-Chromosome plus CML BLOOD, 124 (21), | Citations: 4 (Web of Science Lite)

Essletzbichler P, Konopka T, Santoro F, Chen D, Gapp BV, Kralovics R, Brummelkamp TR, Nijman SMB, Bürckstümmer T. 2014. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res, 24 (12), pp. 2059-2065. | Citations: 89 (Scopus) | Show Abstract | Read more

Near-haploid human cell lines are instrumental for genetic screens and genome engineering as gene inactivation is greatly facilitated by the absence of a second gene copy. However, no completely haploid human cell line has been described, hampering the genetic accessibility of a subset of genes. The near-haploid human cell line HAP1 contains a single copy of all chromosomes except for a heterozygous 30-megabase fragment of Chromosome 15. This large fragment encompasses 330 genes and is integrated on the long arm of Chromosome 19. Here, we employ a CRISPR/Cas9-based genome engineering strategy to excise this sizeable chromosomal fragment and to efficiently and reproducibly derive clones that retain their haploid state. Importantly, spectral karyotyping and single-nucleotide polymorphism (SNP) genotyping revealed that engineered-HAPloid (eHAP) cells are fully haploid with no gross chromosomal aberrations induced by Cas9. Furthermore, whole-genome sequence and transcriptome analysis of the parental HAP1 and an eHAP cell line showed that transcriptional changes are limited to the excised Chromosome 15 fragment. Together, we demonstrate the feasibility of efficiently engineering megabase deletions with the CRISPR/Cas9 technology and report the first fully haploid human cell line.

Chaikuad A, Petros AM, Fedorov O, Xu J, Knapp S. 2014. Structure-based approaches towards identification of fragments for the low-druggability ATAD2 bromodomain MEDCHEMCOMM, 5 (12), pp. 1843-1848. | Citations: 33 (Scopus) | Show Abstract | Read more

<p>Fragments for the development of ATAD2 bromodomain inhibitors have been identified and characterized by NMR and co-crystallization.</p>

England KS, Tumber A, Krojer T, Scozzafava G, Ng SS, Daniel M, Szykowska A, Che K, von Delft F, Burgess-Brown NA et al. 2014. Optimisation of a triazolopyridine based histone demethylase inhibitor yields a potent and selective KDM2A (FBXL11) inhibitor. Medchemcomm, 5 (12), pp. 1879-1886. | Citations: 15 (Scopus) | Show Abstract | Read more

A potent inhibitor of the JmjC histone lysine demethylase KDM2A (compound 35, pIC50 7.2) with excellent selectivity over representatives from other KDM subfamilies has been developed; the discovery that a triazolopyridine compound binds to the active site of JmjC KDMs was followed by optimisation of the triazole substituent for KDM2A inhibition and selectivity.

Abdul Azeez KR, Knapp S, Fernandes JMP, Klussmann E, Elkins JM. 2014. The crystal structure of the RhoA-AKAP-Lbc DH-PH domain complex. Biochem J, 464 (2), pp. 231-239. | Citations: 12 (Web of Science Lite) | Show Abstract | Read more

The RhoGEF (Rho GTPase guanine-nucleotide-exchange factor) domain of AKAP-Lbc (A-kinase-anchoring protein-Lbc, also known as AKAP13) catalyses nucleotide exchange on RhoA and is involved in the development of cardiac hypertrophy. The RhoGEF activity of AKAP-Lbc has also been implicated in cancer. We have determined the X-ray crystal structure of the complex between RhoA-GDP and the AKAP-Lbc RhoGEF [DH (Dbl-homologous)-PH (pleckstrin homology)] domain to 2.1 Å (1 Å = 0.1 nm) resolution. The structure reveals important differences compared with related RhoGEF proteins such as leukaemia-associated RhoGEF. Nucleotide-exchange assays comparing the activity of the DH-PH domain to the DH domain alone showed no role for the PH domain in nucleotide exchange, which is explained by the RhoA-AKAP-Lbc structure. Comparison with a structure of the isolated AKAP-Lbc DH domain revealed a change in conformation of the N-terminal 'GEF switch' region upon binding to RhoA. Isothermal titration calorimetry showed that AKAP-Lbc has only micromolar affinity for RhoA, which combined with the presence of potential binding pockets for small molecules on AKAP-Lbc, raises the possibility of targeting AKAP-Lbc with GEF inhibitors.

Bishop T, Ratcliffe PJ. 2014. Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives. Hypoxia (Auckl), 2 pp. 197-213. | Citations: 10 (European Pubmed Central) | Show Abstract | Read more

By the early 1900s, the close matching of oxygen supply with demand was recognized to be a fundamental requirement for physiological function, and multiple adaptive responses to environment hypoxia had been described. Nevertheless, the widespread operation of mechanisms that directly sense and respond to levels of oxygen in animal cells was not appreciated for most of the twentieth century with investigators generally stressing the regulatory importance of metabolic products. Work over the last 25 years has overturned that paradigm. It has revealed the existence of a set of "oxygen-sensing" 2-oxoglutarate dependent dioxygenases that catalyze the hydroxylation of specific amino acid residues and thereby control the stability and activity of hypoxia-inducible factor. The hypoxia-inducible factor hydroxylase pathway regulates a massive transcriptional cascade that is operative in essentially all animal cells. It transduces a wide range of responses to hypoxia, extending well beyond the classical boundaries of hypoxia physiology. Here we review the discovery and elucidation of these pathways, and consider the opportunities and challenges that have been brought into focus by the findings, including new implications for the integrated physiology of hypoxia and therapeutic approaches to ischemic/hypoxic disease.

Couvé S, Ladroue C, Laine E, Mahtouk K, Guégan J, Gad S, Le Jeune H, Le Gentil M, Nuel G, Kim WY et al. 2014. Genetic evidence of a precisely tuned dysregulation in the hypoxia signaling pathway during oncogenesis. Cancer Res, 74 (22), pp. 6554-6564. | Citations: 8 (European Pubmed Central) | Show Abstract | Read more

The classic model of tumor suppression implies that malignant transformation requires full "two-hit" inactivation of a tumor-suppressor gene. However, more recent work in mice has led to the proposal of a "continuum" model that involves more fluid concepts such as gene dosage-sensitivity and tissue specificity. Mutations in the tumor-suppressor gene von Hippel-Lindau (VHL) are associated with a complex spectrum of conditions. Homozygotes or compound heterozygotes for the R200W germline mutation in VHL have Chuvash polycythemia, whereas heterozygous carriers are free of disease. Individuals with classic, heterozygous VHL mutations have VHL disease and are at high risk of multiple tumors (e.g., CNS hemangioblastomas, pheochromocytoma, and renal cell carcinoma). We report here an atypical family bearing two VHL gene mutations in cis (R200W and R161Q), together with phenotypic analysis, structural modeling, functional, and transcriptomic studies of these mutants in comparison with classical mutants involved in the different VHL phenotypes. We demonstrate that the complex pattern of disease manifestations observed in VHL syndrome is perfectly correlated with a gradient of VHL protein (pVHL) dysfunction in hypoxia signaling pathways. Thus, by studying naturally occurring familial mutations, our work validates in humans the "continuum" model of tumor suppression.

Chaikuad A, Tacconi EMC, Zimmer J, Liang Y, Gray NS, Tarsounas M, Knapp S. 2014. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat Chem Biol, 10 (10), pp. 853-860. | Citations: 77 (Web of Science Lite) | Show Abstract | Read more

Activation of the ERK pathway is a hallmark of cancer, and targeting of upstream signaling partners led to the development of approved drugs. Recently, SCH772984 has been shown to be a selective and potent ERK1/2 inhibitor. Here we report the structural mechanism for its remarkable selectivity. In ERK1/2, SCH772984 induces a so-far-unknown binding pocket that accommodates the piperazine-phenyl-pyrimidine decoration. This new binding pocket was created by an inactive conformation of the phosphate-binding loop and an outward tilt of helix αC. In contrast, structure determination of SCH772984 with the off-target haspin and JNK1 revealed two canonical but distinct type I binding modes. Notably, the new binding mode with ERK1/2 was associated with slow binding kinetics in vitro as well as in cell-based assay systems. The described binding mode of SCH772984 with ERK1/2 enables the design of a new type of specific kinase inhibitors with prolonged on-target activity.

Quinn ER, Ciceri P, Mueller-Knapp S, O'Mahony A, Fedorov O, Filippakopoulos P, Hunt JP, Lasater EA, Pallares G, Picaud S et al. 2014. Dual kinase/bromodomain inhibitors for rationally designed polypharmacology CANCER RESEARCH, 74 (19), pp. 5387-5387. | Read more

Hadzijusufovic E, Albrecht-Schgoer K, Huber K, Grebien F, Eisenwort G, Schgoer W, Ghanim V, Sadovnik I, Kaun C, Herndlhofer S et al. 2014. Nilotinib exerts proatherogenic and growth-inhibitory effects on endothelial cells: a potential mechanism underlying drug-related vasculopathy in Ph plus CML ONCOLOGY RESEARCH AND TREATMENT, 37 pp. 300-300.

Kern S, Agarwal S, Huber K, Gehring AP, Strödke B, Wirth CC, Brügl T, Abodo LO, Dandekar T, Doerig C et al. 2014. Inhibition of the SR protein-phosphorylating CLK kinases of Plasmodium falciparum impairs blood stage replication and malaria transmission. PLoS One, 9 (9), pp. e105732. | Citations: 15 (Web of Science Lite) | Show Abstract | Read more

Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-β-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.

Winter GE, Radic B, Mayor-Ruiz C, Blomen VA, Trefzer C, Kandasamy RK, Huber KVM, Gridling M, Chen D, Klampfl T et al. 2014. The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nat Chem Biol, 10 (9), pp. 768-773. | Citations: 72 (Web of Science Lite) | Show Abstract | Read more

Genotoxic chemotherapy is the most common cancer treatment strategy. However, its untargeted generic DNA-damaging nature and associated systemic cytotoxicity greatly limit its therapeutic applications. Here, we used a haploid genetic screen in human cells to discover an absolute dependency of the clinically evaluated anticancer compound YM155 on solute carrier family member 35 F2 (SLC35F2), an uncharacterized member of the solute carrier protein family that is highly expressed in a variety of human cancers. YM155 generated DNA damage through intercalation, which was contingent on the expression of SLC35F2 and its drug-importing activity. SLC35F2 expression and YM155 sensitivity correlated across a panel of cancer cell lines, and targeted genome editing verified SLC35F2 as the main determinant of YM155-mediated DNA damage toxicity in vitro and in vivo. These findings suggest a new route to targeted DNA damage by exploiting tumor and patient-specific import of YM155.

Yang M, Ternette N, Su H, Dabiri R, Kessler BM, Adam J, Teh BT, Pollard PJ. 2014. The Succinated Proteome of FH-Mutant Tumours. Metabolites, 4 (3), pp. 640-654. | Citations: 18 (European Pubmed Central) | Show Abstract | Read more

Inherited mutations in the Krebs cycle enzyme fumarate hydratase (FH) predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH activity in HLRCC tumours causes accumulation of the Krebs cycle intermediate fumarate to high levels, which may act as an oncometabolite through various, but not necessarily mutually exclusive, mechanisms. One such mechanism, succination, is an irreversible non-enzymatic modification of cysteine residues by fumarate, to form S-(2-succino)cysteine (2SC). Previous studies have demonstrated that succination of proteins including glyceraldehyde 3-phosphate dehydrogenase (GAPDH), kelch-like ECH-associated protein 1 (KEAP1) and mitochondrial aconitase (ACO2) can have profound effects on cellular metabolism. Furthermore, immunostaining for 2SC is a sensitive and specific biomarker for HLRCC tumours. Here, we performed a proteomic screen on an FH-mutant tumour and two HLRCC-derived cancer cell lines and identified 60 proteins where one or more cysteine residues were succinated; 10 of which were succinated at cysteine residues either predicted, or experimentally proven, to be functionally significant. Bioinformatic enrichment analyses identified most succinated targets to be involved in redox signaling. To our knowledge, this is the first proteomic-based succination screen performed in human tumours and cancer-derived cells and has identified novel 2SC targets that may be relevant to the pathogenesis of HLRCC.

Knapp S, Sundström M. 2014. Recently targeted kinases and their inhibitors-the path to clinical trials. Curr Opin Pharmacol, 17 (1), pp. 58-63. | Citations: 30 (Scopus) | Show Abstract | Read more

Protein kinases have emerged as one of the most important drug target families for the treatment of cancer. To date, 28 inhibitors with reported activity versus one or multiple kinases have been approved for clinical use. However, the majority of new clinical trials are focused on new subindications using already approved kinase inhibitors or target well validated kinase targets with novel inhibitors. In contrast, relatively few clinical trials have been initiated using specific inhibitors that inhibit novel kinase targets, despite significant validation efforts in the public domain. Analysis of the target validation history of first in class kinase inhibitors revealed a long delay between initial disease association and development of inhibitors. As part of this analysis, we have investigated which first in class inhibitor that entered phase I clinical trials over the last five years and also considered which research approaches that were used to validate them.

Knapp S, Sundstrom M. 2014. Recently targeted kinases and their inhibitors - the path to clinical trials CURRENT OPINION IN PHARMACOLOGY, 17 pp. 58-63. | Citations: 29 (Web of Science Lite) | Read more

Colinge J, César-Razquin A, Huber K, Breitwieser FP, Májek P, Superti-Furga G. 2014. Building and exploring an integrated human kinase network: global organization and medical entry points. J Proteomics, 107 pp. 113-127. | Citations: 9 (Web of Science Lite) | Show Abstract | Read more

UNLABELLED: Biological matter is organized in functional networks of different natures among which kinase-substrate and protein-protein interactions play an important role. Large public data collections allowed us to compile an important corpus of interaction data around human protein kinases. One of the most interesting observations analyzing this network is that coherence in kinase functional activity relies on kinase substrate interactions primarily and not on which protein complexes are formed around them. Further dissecting the two types of interactions at the level of kinase groups (CMGCs, Tyrosine kinases, etc.) we show a prevalence of intra-group interconnectivity, which we can naturally relate to current scenarios of evolution of biological networks. Tracking publication dates we observe high correlation of kinase interaction research focus with general kinase research. We find a similar bias in the targets of kinase inhibitors that feature high redundancy. Finally, intersecting kinase inhibitor specificity with sets of kinases located at specific positions in the kinase network, we propose alternative options for future therapeutic strategies using these compounds. BIOLOGICAL SIGNIFICANCE: Despite its importance for cellular regulation and the fact that protein kinases feature prominent targets of modern therapeutic approaches, the structure and logic of the global, integrated protein phosphorylation network have not been investigated intensively. To focus on the regulatory skeleton of the phosphorylation network, we contemplated a network consisting of kinases, their substrates, and publicly available physical protein interactions. Analysis of this network at multiple levels allowed establishing a series of interesting properties such as prevalence of kinase substrate interactions as opposed to general protein-protein interactions for establishing a holistic control over kinases activities. Kinases controlling many or a few only other kinases, in addition to non-kinases, were distributed in cellular compartments differently. They were also targeted by kinase inhibitors with distinct success rates. Non-kinases tightly regulated by a large number of kinases were involved in biological processes both specific and shared with their regulators while being preferably localized in the nucleus. Collectively, these observations may provide for a new perspective in the elaboration of pharmacological intervention strategies. We complemented our study of kinase interactions with a perspective of how this type of data is generated in comparison with general research about those enzymes. Namely, what was the temporal evolution of the research community attention for interaction versus non-interaction-based kinase experiments. This article is part of a Special Issue entitled: "20years of Proteomics" in memory of Viatliano Pallini" Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

Nagarajan S, Hossan T, Alawi M, Najafova Z, Indenbirken D, Bedi U, Taipaleenmäki H, Ben-Batalla I, Scheller M, Loges S et al. 2014. Bromodomain Protein BRD4 Is Required for Estrogen Receptor-Dependent Enhancer Activation and Gene Transcription Cell Reports, 8 (2), pp. 460-469. | Citations: 68 (Scopus) | Show Abstract | Read more

The estrogen receptor α (ERα) controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ERα-dependent cancers. We show that BRD4 regulates ERα-induced gene expression by affecting elongation-associated phosphorylationof RNA polymerase II (RNAPII) and histone H2Bmonoubiquitination. Consistently, BRD4 activity isrequired for proliferation of ER+ breast and endometrial cancer cells and uterine growth in mice. Genome-wide studies revealed an enrichment of BRD4 on transcriptional start sites of active genes and a requirement of BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we demonstrate that BRD4 occupancy on distal EREs enriched for H3K27ac is required for recruitment and elongation of RNAPII on EREs and the production of ERα-dependent enhancer RNAs. These results uncover BRD4 as a central regulator of ERα function and potential therapeutic target. © 2014 The Authors.

Giansanti P, Preisinger C, Huber KVM, Gridling M, Superti-Furga G, Bennett KL, Heck AJR. 2014. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics. ACS Chem Biol, 9 (7), pp. 1490-1498. | Citations: 9 (Scopus) | Show Abstract | Read more

Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of chronic myelogenous leukemia, such drugs are also now evaluated for other types of cancer. However, many developed kinase inhibitors are not very target-specific and therefore may induce side effects. The importance of such side effects is certainly cell-proteome dependent. Understanding the all-inclusive action of a tyrosine kinase inhibitor on each individual cell-type entails the identification of potential targets, combined with monitoring the downstream effects revealing the signaling networks involved. Here, we explored a multilevel quantitative mass spectrometry-based proteomic strategy to identify the direct targets and downstream signaling effect of four tyrosine kinase inhibitors (imatinib, dasatinib, bosutinib, and nilotinib) in epidermoid carcinoma cells, as a model system for skin-cancer. More than 25 tyrosine kinases showed affinity to the drugs, with imatinib and nilotinib displaying a high specificity, especially when compared to dasatinib and bosutinib. Consequently, the latter two drugs showed a larger effect on downstream phosphotyrosine signaling. Many of the proteins affected are key regulators in cell adhesion and invasion. Our data represents a multiplexed view on the promiscuous action of certain tyrosine kinase inhibitors that needs to be taking into consideration prior to the application of these drugs in the treatment of different forms of cancer.

Philpott M, Rogers CM, Yapp C, Wells C, Lambert J-P, Strain-Damerell C, Burgess-Brown NA, Gingras A-C, Knapp S, Müller S. 2014. Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics Chromatin, 7 (1), pp. 14. | Citations: 40 (Scopus) | Show Abstract | Read more

BACKGROUND: Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. RESULTS: Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets, demonstrating the specificity of the method. CONCLUSIONS: Viable FRAP assays were established for 11 representative bromodomain-containing proteins that broadly cover the bromodomain phylogenetic tree. Addition of SAHA can overcome weak binding to chromatin, and the use of tandem bromodomain constructs can eliminate masking effects of other chromatin binding domains. Together, these results demonstrate that FRAP assays offer a potentially pan-bromodomain method for generating cell-based assays, allowing the testing of compounds with respect to cell permeability, on-target efficacy and selectivity.

Petousi N, Copley RR, Lappin TRJ, Haggan SE, Bento CM, Cario H, Percy MJ, WGS Consortium, Ratcliffe PJ, Robbins PA, McMullin MF. 2014. Erythrocytosis associated with a novel missense mutation in the BPGM gene. Haematologica, 99 (10), pp. e201-e204. | Citations: 6 (Scopus) | Read more

Nagarajan S, Hossan T, Alawi M, Najafova Z, Indenbirken D, Bedi U, Taipaleenmäki H, Ben-Batalla I, Scheller M, Loges S et al. 2014. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription. Cell Rep, 8 (2), pp. 460-469. | Citations: 63 (Web of Science Lite) | Show Abstract | Read more

The estrogen receptor α (ERα) controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ERα-dependent cancers. We show that BRD4 regulates ERα-induced gene expression by affecting elongation-associated phosphorylation of RNA polymerase II (RNAPII) and histone H2B monoubiquitination. Consistently, BRD4 activity is required for proliferation of ER(+) breast and endometrial cancer cells and uterine growth in mice. Genome-wide studies revealed an enrichment of BRD4 on transcriptional start sites of active genes and a requirement of BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we demonstrate that BRD4 occupancy on distal EREs enriched for H3K27ac is required for recruitment and elongation of RNAPII on EREs and the production of ERα-dependent enhancer RNAs. These results uncover BRD4 as a central regulator of ERα function and potential therapeutic target.

Storer RI, Brennan PE, Brown AD, Bungay PJ, Conlon KM, Corbett MS, DePianta RP, Fish PV, Heifetz A, Ho DKH et al. 2014. Multiparameter optimization in CNS drug discovery: design of pyrimido[4,5-d]azepines as potent 5-hydroxytryptamine 2C (5-HT₂C) receptor agonists with exquisite functional selectivity over 5-HT₂A and 5-HT₂B receptors. J Med Chem, 57 (12), pp. 5258-5269. | Citations: 16 (Scopus) | Show Abstract | Read more

A series of 4-substituted pyrimido[4,5-d]azepines that are potent, selective 5-HT2C receptor partial agonists is described. A rational medicinal chemistry design strategy to deliver CNS penetration coupled with SAR-based optimization of selectivity and agonist potency provided compounds with the desired balance of preclinical properties. Lead compounds 17 (PF-4479745) and 18 (PF-4522654) displayed robust pharmacology in a preclinical canine model of stress urinary incontinence (SUI) and no measurable functional agonism at the key selectivity targets 5-HT2A and 5-HT2B in relevant tissue-based assay systems. Utilizing recent advances in the structural biology of GPCRs, homology modeling has been carried out to rationalize binding and agonist efficacy of these compounds.

Zhao Z, Wu H, Wang L, Liu Y, Knapp S, Liu Q, Gray NS. 2014. Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol, 9 (6), pp. 1230-1241. | Citations: 159 (Scopus) | Show Abstract | Read more

The ATP site of kinases displays remarkable conformational flexibility when accommodating chemically diverse small molecule inhibitors. The so-called activation segment, whose conformation controls catalytic activity and access to the substrate binding pocket, can undergo a large conformational change with the active state assuming a 'DFG-in' and an inactive state assuming a 'DFG-out' conformation. Compounds that preferentially bind to the DFG-out conformation are typically called 'type II' inhibitors in contrast to 'type I' inhibitors that bind to the DFG-in conformation. This review surveys the large number of type II inhibitors that have been developed and provides an analysis of their crystallographically determined binding modes. Using a small library of type II inhibitors, we demonstrate that more than 200 kinases can be targeted, suggesting that type II inhibitors may not be intrinsically more selective than type I inhibitors.

Hay DA, Fedorov O, Martin S, Singleton DC, Tallant C, Wells C, Picaud S, Philpott M, Monteiro OP, Rogers CM et al. 2014. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J Am Chem Soc, 136 (26), pp. 9308-9319. | Citations: 130 (Scopus) | Show Abstract | Read more

Small-molecule inhibitors that target bromodomains outside of the bromodomain and extra-terminal (BET) sub-family are lacking. Here, we describe highly potent and selective ligands for the bromodomain module of the human lysine acetyl transferase CBP/p300, developed from a series of 5-isoxazolyl-benzimidazoles. Our starting point was a fragment hit, which was optimized into a more potent and selective lead using parallel synthesis employing Suzuki couplings, benzimidazole-forming reactions, and reductive aminations. The selectivity of the lead compound against other bromodomain family members was investigated using a thermal stability assay, which revealed some inhibition of the structurally related BET family members. To address the BET selectivity issue, X-ray crystal structures of the lead compound bound to the CREB binding protein (CBP) and the first bromodomain of BRD4 (BRD4(1)) were used to guide the design of more selective compounds. The crystal structures obtained revealed two distinct binding modes. By varying the aryl substitution pattern and developing conformationally constrained analogues, selectivity for CBP over BRD4(1) was increased. The optimized compound is highly potent (Kd = 21 nM) and selective, displaying 40-fold selectivity over BRD4(1). Cellular activity was demonstrated using fluorescence recovery after photo-bleaching (FRAP) and a p53 reporter assay. The optimized compounds are cell-active and have nanomolar affinity for CBP/p300; therefore, they should be useful in studies investigating the biological roles of CBP and p300 and to validate the CBP and p300 bromodomains as therapeutic targets.

Rudolf AF, Skovgaard T, Knapp S, Jensen LJ, Berthelsen J. 2014. A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination. PLoS One, 9 (6), pp. e98800. | Citations: 23 (Scopus) | Show Abstract | Read more

Binding assays are increasingly used as a screening method for protein kinase inhibitors; however, as yet only a weak correlation with enzymatic activity-based assays has been demonstrated. We show that the correlation between the two types of assays can be improved using more precise screening conditions. Furthermore a marked improvement in the correlation was found by using kinase constructs containing the catalytic domain in presence of additional domains or subunits.

Heim A, Grimm C, Müller U, Häußler S, Mackeen MM, Merl J, Hauck SM, Kessler BM, Schofield CJ, Wolf A, Böttger A. 2014. Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Res, 42 (12), pp. 7833-7850. | Citations: 27 (Web of Science Lite) | Show Abstract | Read more

The Fe(II) and 2-oxoglutarate dependent oxygenase Jmjd6 has been shown to hydroxylate lysine residues in the essential splice factor U2 auxiliary factor 65 kDa subunit (U2AF65) and to act as a modulator of alternative splicing. We describe further evidence for the role of Jmjd6 in the regulation of pre-mRNA processing including interactions of Jmjd6 with multiple arginine-serine-rich (RS)-domains of SR- and SR-related proteins including U2AF65, Luc7-like protein 3 (Luc7L3), SRSF11 and Acinus S', but not with the bona fide RS-domain of SRSF1. The identified Jmjd6 target proteins are involved in different mRNA processing steps and play roles in exon dependent alternative splicing and exon definition. Moreover, we show that Jmjd6 modifies splicing of a constitutive splice reporter, binds RNA derived from the reporter plasmid and punctually co-localises with nascent RNA. We propose that Jmjd6 exerts its splice modulatory function by interacting with specific SR-related proteins during splicing in a RNA dependent manner.

Kessler B, Knupp M, Graber P, Zwicky L, Hintermann B, Zimmerli W, Sendi P. 2014. The treatment and outcome of peri-prosthetic infection of the ankle: a single cohort-centre experience of 34 cases. Bone Joint J, 96-B (6), pp. 772-777. | Citations: 13 (Web of Science Lite) | Show Abstract | Read more

The treatment of peri-prosthetic joint infection (PJI) of the ankle is not standardised. It is not clear whether an algorithm developed for hip and knee PJI can be used in the management of PJI of the ankle. We evaluated the outcome, at two or more years post-operatively, in 34 patients with PJI of the ankle, identified from a cohort of 511 patients who had undergone total ankle replacement. Their median age was 62.1 years (53.3 to 68.2), and 20 patients were women. Infection was exogenous in 28 (82.4%) and haematogenous in six (17.6%); 19 (55.9%) were acute infections and 15 (44.1%) chronic. Staphylococci were the cause of 24 infections (70.6%). Surgery with retention of one or both components was undertaken in 21 patients (61.8%), both components were replaced in ten (29.4%), and arthrodesis was undertaken in three (8.8%). An infection-free outcome with satisfactory function of the ankle was obtained in 23 patients (67.6%). The best rate of cure followed the exchange of both components (9/10, 90%). In the 21 patients in whom one or both components were retained, four had a relapse of the same infecting organism and three had an infection with another organism. Hence the rate of cure was 66.7% (14 of 21). In these 21 patients, we compared the treatment given to an algorithm developed for the treatment of PJI of the knee and hip. In 17 (80.9%) patients, treatment was not according to the algorithm. Most (11 of 17) had only one criterion against retention of one or both components. In all, ten of 11 patients with severe soft-tissue compromise as a single criterion had a relapse-free survival. We propose that the treatment concept for PJI of the ankle requires adaptation of the grading of quality of the soft tissues.

Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, Ito S, Cooper S, Kondo K, Koseki Y et al. 2014. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell, 157 (6), pp. 1445-1459. | Citations: 270 (Scopus) | Show Abstract | Read more

Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.

Rooney TPC, Filippakopoulos P, Fedorov O, Picaud S, Cortopassi WA, Hay DA, Martin S, Tumber A, Rogers CM, Philpott M et al. 2014. A series of potent CREBBP bromodomain ligands reveals an induced-fit pocket stabilized by a cation-π interaction. Angew Chem Int Ed Engl, 53 (24), pp. 6126-6130. | Citations: 63 (Scopus) | Show Abstract | Read more

The benzoxazinone and dihydroquinoxalinone fragments were employed as novel acetyl lysine mimics in the development of CREBBP bromodomain ligands. While the benzoxazinone series showed low affinity for the CREBBP bromodomain, expansion of the dihydroquinoxalinone series resulted in the first potent inhibitors of a bromodomain outside the BET family. Structural and computational studies reveal that an internal hydrogen bond stabilizes the protein-bound conformation of the dihydroquinoxalinone series. The side chain of this series binds in an induced-fit pocket forming a cation-π interaction with R1173 of CREBBP. The most potent compound inhibits binding of CREBBP to chromatin in U2OS cells.

Abdi K, Singh NJ, Spooner E, Kessler BM, Radaev S, Lantz L, Xiao TS, Matzinger P, Sun PD, Ploegh HL. 2014. Free IL-12p40 monomer is a polyfunctional adaptor for generating novel IL-12-like heterodimers extracellularly. J Immunol, 192 (12), pp. 6028-6036. | Citations: 19 (Scopus) | Show Abstract | Read more

IL-12p40 partners with the p35 and p19 polypeptides to generate the heterodimeric cytokines IL-12 and IL-23, respectively. These cytokines play critical and distinct roles in host defense. The assembly of these heterodimers is thought to take place within the cell, resulting in the secretion of fully functional cytokines. Although the p40 subunit alone can also be rapidly secreted in response to inflammatory signals, its biological significance remains unclear. In this article, we show that the secreted p40 monomer can generate de novo IL-12-like activities by combining extracellularly with p35 released from other cells. Surprisingly, an unbiased proteomic analysis reveals multiple such extracellular binding partners for p40 in the serum of mice after an endotoxin challenge. We biochemically validate the binding of one of these novel partners, the CD5 Ag-like glycoprotein, to the p40 monomer. Nevertheless, the assembled p40-CD5L heterodimer does not recapitulate the biological activity of IL-12. These findings underscore the plasticity of secreted free p40 monomer, suggesting that p40 functions as an adaptor that is able to generate multiple de novo composites in combination with other locally available polypeptide partners after secretion.

Akhtar M, Huang H, Kaisar M, Leuvenink HGD, Kessler B, Fuggle S, Pugh C, Ploeg RJ. 2014. USING PROTEOMICS AND METABOLOMICS AS NOVEL TOOLS TO IDENTIFY MITOCHONDRIAL DYSFUNCTION AND METABOLIC DYSREGULATION AS CRITICAL FACTORS IN BRAIN DEATH INDUCED KIDNEY INJURY TRANSPLANT INTERNATIONAL, 27 pp. 6-6.

Veiga-Santos P, Reignault LC, Huber K, Bracher F, De Souza W, De Carvalho TMU. 2014. Inhibition of NAD+-dependent histone deacetylases (sirtuins) causes growth arrest and activates both apoptosis and autophagy in the pathogenic protozoan Trypanosoma cruzi. Parasitology, 141 (6), pp. 814-825. | Citations: 12 (Web of Science Lite) | Show Abstract | Read more

Chagas disease, which is caused by the parasite Trypanosoma cruzi, affects approximately 7-8 million people in Latin America. The drugs available to treat this disease are ineffective against chronic phase disease and are associated with toxic side effects. Therefore, the development of new compounds that can kill T. cruzi at low concentrations is critically important. Herein, we report the effects of a novel 3-arylideneindolin-2-one that inhibits sirtuins, which are highly conserved proteins that are involved in a variety of physiological processes. The compound KH-TFMDI was tested against the epimastigote, trypomastigote and amastigote forms of T. cruzi, and its effects were evaluated using flow cytometry, light and electron microscopy. KH-TFMDI inhibited the replication of T. cruzi intracellular amastigotes with an IC50 of 0.5 ± 0.2 μM, which is significantly lower than the IC50 of benznidazole. The compound also lysed the highly infectious bloodstream trypomastigotes (BST) with LC50 values of 0.8 ± 0.3 μM at 4 °C and 2.5 ± 1.1 μM at 37 °C. KH-TFMDI inhibited cytokinesis and induced several morphological changes in the parasite, leading to its death by apoptosis and autophagy. This study highlights sirtuins as a potential new target for Chagas disease therapy.

Kaisaki PJ, Otto GW, McGouran JF, Toubal A, Argoud K, Waller-Evans H, Finlay C, Caldérari S, Bihoreau M-T, Kessler BM et al. 2014. Genetic control of differential acetylation in diabetic rats. PLoS One, 9 (4), pp. e94555. | Citations: 2 (Web of Science Lite) | Show Abstract | Read more

Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression.

Filippakopoulos P, Knapp S. 2014. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov, 13 (5), pp. 337-356. | Citations: 525 (Scopus) | Show Abstract | Read more

Lysine acetylation is a key mechanism that regulates chromatin structure; aberrant acetylation levels have been linked to the development of several diseases. Acetyl-lysine modifications create docking sites for bromodomains, which are small interaction modules found on diverse proteins, some of which have a key role in the acetylation-dependent assembly of transcriptional regulator complexes. These complexes can then initiate transcriptional programmes that result in phenotypic changes. The recent discovery of potent and highly specific inhibitors for the BET (bromodomain and extra-terminal) family of bromodomains has stimulated intensive research activity in diverse therapeutic areas, particularly in oncology, where BET proteins regulate the expression of key oncogenes and anti-apoptotic proteins. In addition, targeting BET bromodomains could hold potential for the treatment of inflammation and viral infection. Here, we highlight recent progress in the development of bromodomain inhibitors, and their potential applications in drug discovery.

Maiolica A, de Medina-Redondo M, Schoof EM, Chaikuad A, Villa F, Gatti M, Jeganathan S, Lou HJ, Novy K, Hauri S et al. 2014. Modulation of the chromatin phosphoproteome by the Haspin protein kinase. Mol Cell Proteomics, 13 (7), pp. 1724-1740. | Citations: 17 (Web of Science Lite) | Show Abstract | Read more

Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg(2) and Lys(4) adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys(4) of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser(137) of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser(137) resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser(137) might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.

Trudgian DC, Fischer R, Guo X, Kessler BM, Mirzaei H. 2014. GOAT--a simple LC-MS/MS gradient optimization tool. Proteomics, 14 (12), pp. 1467-1471. | Citations: 5 (Scopus) | Show Abstract | Read more

Modern nano-HPLC systems are capable of extremely precise control of solvent gradients, allowing high-resolution separation of peptides. Most proteomics laboratories use a simple linear analytical gradient for nano-LC-MS/MS experiments, though recent evidence indicates that optimized non-linear gradients result in increased peptide and protein identifications from cell lysates. In concurrent work, we examined non-linear gradients for the analysis of samples fractionated at the peptide level, where the distribution of peptide retention times often varies by fraction. We hypothesized that greater coverage of these samples could be achieved using per-fraction optimized gradients. We demonstrate that the optimized gradients improve the distribution of peptides throughout the analysis. Using previous generation MS instrumentation, a considerable gain in peptide and protein identifications can be realized. With current MS platforms that have faster electronics and achieve shorter duty cycle, the improvement in identifications is smaller. Our gradient optimization method has been implemented in a simple graphical tool (GOAT) that is MS-vendor independent, does not require peptide ID input, and is freely available for non-commercial use at http://proteomics.swmed.edu/goat/

Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell SL, Thiele DJ, Counter CM. 2014. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 509 (7501), pp. 492-496. | Citations: 153 (Scopus) | Show Abstract | Read more

The BRAF kinase is mutated, typically Val 600→Glu (V600E), to induce an active oncogenic state in a large fraction of melanomas, thyroid cancers, hairy cell leukaemias and, to a smaller extent, a wide spectrum of other cancers. BRAF(V600E) phosphorylates and activates the MEK1 and MEK2 kinases, which in turn phosphorylate and activate the ERK1 and ERK2 kinases, stimulating the mitogen-activated protein kinase (MAPK) pathway to promote cancer. Targeting MEK1/2 is proving to be an important therapeutic strategy, given that a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma, an effect that is increased when administered together with a BRAF(V600E) inhibitor. We previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction. Here we show decreasing the levels of CTR1 (Cu transporter 1), or mutations in MEK1 that disrupt Cu binding, decreased BRAF(V600E)-driven signalling and tumorigenesis in mice and human cell settings. Conversely, a MEK1-MEK5 chimaera that phosphorylated ERK1/2 independently of Cu or an active ERK2 restored the tumour growth of murine cells lacking Ctr1. Cu chelators used in the treatment of Wilson disease decreased tumour growth of human or murine cells transformed by BRAF(V600E) or engineered to be resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat cancers containing the BRAF(V600E) mutation.

Muellner MK, Duernberger G, Ganglberger F, Kerzendorfer C, Uras IZ, Schoenegger A, Bagienski K, Colinge J, Nijman SMB. 2014. TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens. BMC Bioinformatics, 15 (1), pp. 98. | Citations: 3 (Scopus) | Show Abstract | Read more

BACKGROUND: Measuring the impact of combinations of genetic or chemical perturbations on cellular fitness, sometimes referred to as synthetic lethal screening, is a powerful method for obtaining novel insights into gene function and drug action. Especially when performed at large scales, gene-gene or gene-drug interaction screens can reveal complex genetic interactions or drug mechanism of action or even identify novel therapeutics for the treatment of diseases.The result of such large-scale screen results can be represented as a matrix with a numeric score indicating the cellular fitness (e.g. viability or doubling time) for each double perturbation. In a typical screen, the majority of combinations do not impact the cellular fitness. Thus, it is critical to first discern true "hits" from noise. Subsequent data exploration and visualization methods can assist to extract meaningful biological information from the data. However, despite the increasing interest in combination perturbation screens, no user friendly open-source program exists that combines statistical analysis, data exploration tools and visualization. RESULTS: We developed TOPS (Tool for Combination Perturbation Screen Analysis), a Java and R-based software tool with a simple graphical user interface that allows the user to import, analyze, filter and plot data from double perturbation screens as well as other compatible data. TOPS was designed in a modular fashion to allow the user to add alternative importers for data formats or custom analysis scripts not covered by the original release.We demonstrate the utility of TOPS on two datasets derived from functional genetic screens using different methods. Dataset 1 is a gene-drug interaction screen and is based on Luminex xMAP technology. Dataset 2 is a gene-gene short hairpin (sh)RNAi screen exploring the interactions between deubiquitinating enzymes and a number of prominent oncogenes using massive parallel sequencing (MPS). CONCLUSIONS: TOPS provides the benchtop scientist with a free toolset to analyze, filter and visualize data from functional genomic gene-gene and gene-drug interaction screens with a flexible interface to accommodate different technologies and analysis algorithms in addition to those already provided here. TOPS is freely available for academic and non-academic users and is released as open source.

Huang H, Ideh RC, Gitau E, Thézénas ML, Jallow M, Ebruke B, Chimah O, Oluwalana C, Karanja H, Mackenzie G et al. 2014. Discovery and validation of biomarkers to guide clinical management of pneumonia in African children. Clin Infect Dis, 58 (12), pp. 1707-1715. | Citations: 24 (Web of Science Lite) | Show Abstract | Read more

BACKGROUND: Pneumonia is the leading cause of death in children globally. Clinical algorithms remain suboptimal for distinguishing severe pneumonia from other causes of respiratory distress such as malaria or distinguishing bacterial pneumonia and pneumonia from others causes, such as viruses. Molecular tools could improve diagnosis and management. METHODS: We conducted a mass spectrometry-based proteomic study to identify and validate markers of severity in 390 Gambian children with pneumonia (n = 204) and age-, sex-, and neighborhood-matched controls (n = 186). Independent validation was conducted in 293 Kenyan children with respiratory distress (238 with pneumonia, 41 with Plasmodium falciparum malaria, and 14 with both). Predictive value was estimated by the area under the receiver operating characteristic curve (AUC). RESULTS: Lipocalin 2 (Lpc-2) was the best protein biomarker of severe pneumonia (AUC, 0.71 [95% confidence interval, .64-.79]) and highly predictive of bacteremia (78% [64%-92%]), pneumococcal bacteremia (84% [71%-98%]), and "probable bacterial etiology" (91% [84%-98%]). These results were validated in Kenyan children with severe malaria and respiratory distress who also met the World Health Organization definition of pneumonia. The combination of Lpc-2 and haptoglobin distinguished bacterial versus malaria origin of respiratory distress with high sensitivity and specificity in Gambian children (AUC, 99% [95% confidence interval, 99%-100%]) and Kenyan children (82% [74%-91%]). CONCLUSIONS: Lpc-2 and haptoglobin can help discriminate the etiology of clinically defined pneumonia and could be used to improve clinical management. These biomarkers should be further evaluated in prospective clinical studies.

Huber KVM, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth A-S, Göktürk C, Sanjiv K, Strömberg K et al. 2014. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature, 508 (7495), pp. 222-227. | Citations: 189 (Scopus) | Show Abstract | Read more

Activated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used (R)-enantiomer of the drug was inactive, whereas the (S)-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose (S)-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents.

Guetzoyan L, Ingham RJ, Nikbin N, Rossignol J, Wolling M, Baumert M, Burgess-Brown NA, Strain-Damerell CM, Shrestha L, Brennan PE et al. 2014. Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography MEDCHEMCOMM, 5 (4), pp. 540-546. | Citations: 26 (Scopus) | Show Abstract | Read more

<p>Novel technologies were developed and used for the synthesis and evaluation of new triazolopyridazine BRD9 inhibitors.</p>

Cowan-Jacob SW, Jahnke W, Knapp S. 2014. Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem, 6 (5), pp. 541-561. | Citations: 45 (Scopus) | Show Abstract | Read more

Protein kinases are involved in many essential cellular processes and their deregulation can lead to a variety of diseases, including cancer. The pharmaceutical industry has invested heavily in the identification of kinase inhibitors to modulate these disease-promoting pathways, resulting in several successful drugs. However, the field is challenging as it is difficult to identify novel selective inhibitors with good pharmacokinetic/pharmacodynamic properties. In addition, resistance to kinase inhibitor treatment frequently arises. The identification of non-ATP site targeting ('allosteric') inhibitors, the identification of kinase activators and the expansion of kinase target space to include the less studied members of the family, including atypical- and pseudo-kinases, are potential avenues to overcome these challenges. In this perspective, the opportunities and challenges of following these approaches and others will be discussed.

Ekambaram R, Enkvist E, Manoharan GB, Ugandi M, Kasari M, Viht K, Knapp S, Issinger O-G, Uri A. 2014. Benzoselenadiazole-based responsive long-lifetime photoluminescent probes for protein kinases. Chem Commun (Camb), 50 (31), pp. 4096-4098. | Citations: 10 (Scopus) | Show Abstract | Read more

Benzoselenadiazole-containing inhibitors of protein kinases were constructed and their capability to emit phosphorescence in the kinase-bound state was established. Labelling of the inhibitors with a red fluorescent dye led to sensitive responsive photoluminescent probes for protein kinase CK2 that emitted red light with a long (microsecond-scale) decay time upon excitation of the probes with a pulse of near-UV light.

Ciceri P, Müller S, O'Mahony A, Fedorov O, Filippakopoulos P, Hunt JP, Lasater EA, Pallares G, Picaud S, Wells C et al. 2014. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol, 10 (4), pp. 305-312. | Citations: 160 (Scopus) | Show Abstract | Read more

Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multitarget profile has, however, necessitated the application of combination therapies, which can pose major clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as new targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase-bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348, which are clinical PLK1 and JAK2-FLT3 kinase inhibitors, respectively, is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a new strategy for rational single-agent polypharmacological targeting. Furthermore, structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase-bromodomain inhibitors.

Mueller S, Knapp S. 2014. Discovery of BET bromodomain inhibitors and their role in target validation MEDCHEMCOMM, 5 (3), pp. 288-296. | Citations: 26 (Web of Science Lite) | Show Abstract | Read more

<p>Publicly available bromodomain inhibitors led to discoveries of key functions of BET-proteins in disease and development of new therapeutic strategies.</p>

Davis MI, Lea W, Simeonov A, Auld D. 2014. Literature Search and Review ASSAY and Drug Development Technologies, 12 (2), pp. 101-109. | Read more

Mair B, Kubicek S, Nijman SMB. 2014. Exploiting epigenetic vulnerabilities for cancer therapeutics. Trends Pharmacol Sci, 35 (3), pp. 136-145. | Citations: 37 (Scopus) | Show Abstract | Read more

Epigenetic deregulation is a hallmark of cancer, and there has been increasing interest in therapeutics that target chromatin-modifying enzymes and other epigenetic regulators. The rationale for applying epigenetic drugs to treat cancer is twofold. First, epigenetic changes are reversible, and drugs could therefore be used to restore the normal (healthy) epigenetic landscape. However, it is unclear whether drugs can faithfully restore the precancerous epigenetic state. Second, chromatin regulators are often mutated in cancer, making them attractive drug targets. However, in most instances it is unknown whether cancer cells are addicted to these mutated chromatin proteins, or whether their mutation merely results in epigenetic instability conducive to the selection of secondary aberrations. An alternative incentive for targeting chromatin regulators is the exploitation of cancer-specific vulnerabilities, including synthetic lethality, caused by epigenetic deregulation. We review evidence for the hypothesis that mechanisms other than oncogene addiction are a basis for the application of epigenetic drugs, and propose future research directions.

Katz MJ, Acevedo JM, Loenarz C, Galagovsky D, Liu-Yi P, Pérez-Pepe M, Thalhammer A, Sekirnik R, Ge W, Melani M et al. 2014. Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc Natl Acad Sci U S A, 111 (11), pp. 4025-4030. | Citations: 29 (Web of Science Lite) | Show Abstract | Read more

Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.

Loenarz C, Sekirnik R, Thalhammer A, Ge W, Spivakovsky E, Mackeen MM, McDonough MA, Cockman ME, Kessler BM, Ratcliffe PJ et al. 2014. Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc Natl Acad Sci U S A, 111 (11), pp. 4019-4024. | Citations: 59 (Web of Science Lite) | Show Abstract | Read more

The mechanisms by which gene expression is regulated by oxygen are of considerable interest from basic science and therapeutic perspectives. Using mass spectrometric analyses of Saccharomyces cerevisiae ribosomes, we found that the amino acid residue in closest proximity to the decoding center, Pro-64 of the 40S subunit ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes posttranslational hydroxylation. We identify RPS23 hydroxylases as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglutarate dependent oxygenases; their catalytic domain is closely related to transcription factor prolyl trans-4-hydroxylases that act as oxygen sensors in the hypoxic response in animals. The RPS23 hydroxylases in S. cerevisiae (Tpa1p), Schizosaccharomyces pombe and green algae catalyze an unprecedented dihydroxylation modification. This observation contrasts with higher eukaryotes, where RPS23 is monohydroxylated; the human Tpa1p homolog OGFOD1 catalyzes prolyl trans-3-hydroxylation. TPA1 deletion modulates termination efficiency up to ∼10-fold, including of pathophysiologically relevant sequences; we reveal Rps23p hydroxylation as its molecular basis. In contrast to most previously characterized accuracy modulators, including antibiotics and the prion state of the S. cerevisiae translation termination factor eRF3, Rps23p hydroxylation can either increase or decrease translational accuracy in a stop codon context-dependent manner. We identify conditions where Rps23p hydroxylation status determines viability as a consequence of nonsense codon suppression. The results reveal a direct link between oxygenase catalysis and the regulation of gene expression at the translational level. They will also aid in the development of small molecules altering translational accuracy for the treatment of genetic diseases linked to nonsense mutations.

Singleton RS, Liu-Yi P, Formenti F, Ge W, Sekirnik R, Fischer R, Adam J, Pollard PJ, Wolf A, Thalhammer A et al. 2014. OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proc Natl Acad Sci U S A, 111 (11), pp. 4031-4036. | Citations: 46 (Web of Science Lite) | Show Abstract | Read more

2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) is predicted to be a conserved 2OG oxygenase, the catalytic domain of which is related to hypoxia-inducible factor prolyl hydroxylases. OGFOD1 homologs in yeast are implicated in diverse cellular functions ranging from oxygen-dependent regulation of sterol response genes (Ofd1, Schizosaccharomyces pombe) to translation termination/mRNA polyadenylation (Tpa1p, Saccharomyces cerevisiae). However, neither the biochemical activity of OGFOD1 nor the identity of its substrate has been defined. Here we show that OGFOD1 is a prolyl hydroxylase that catalyzes the posttranslational hydroxylation of a highly conserved residue (Pro-62) in the small ribosomal protein S23 (RPS23). Unusually OGFOD1 retained a high affinity for, and forms a stable complex with, the hydroxylated RPS23 substrate. Knockdown or inactivation of OGFOD1 caused a cell type-dependent induction of stress granules, translational arrest, and growth impairment in a manner complemented by wild-type but not inactive OGFOD1. The work identifies a human prolyl hydroxylase with a role in translational regulation.

Masson N, Ratcliffe PJ. 2014. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab, 2 (1), pp. 3. | Citations: 119 (Scopus) | Show Abstract | Read more

Both tumor hypoxia and dysregulated metabolism are classical features of cancer. Recent analyses have revealed complex interconnections between oncogenic activation, hypoxia signaling systems and metabolic pathways that are dysregulated in cancer. These studies have demonstrated that rather than responding simply to error signals arising from energy depletion or tumor hypoxia, metabolic and hypoxia signaling pathways are also directly connected to oncogenic signaling mechanisms at many points. This review will summarize current understanding of the role of hypoxia inducible factor (HIF) in these networks. It will also discuss the role of these interconnected pathways in generating the cancer phenotype; in particular, the implications of switching massive pathways that are physiologically 'hard-wired' to oncogenic mechanisms driving cancer.

Feng T, Yamamoto A, Wilkins SE, Sokolova E, Yates LA, Münzel M, Singh P, Hopkinson RJ, Fischer R, Cockman ME et al. 2014. Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Mol Cell, 53 (4), pp. 645-654. | Citations: 48 (Web of Science Lite) | Show Abstract | Read more

Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation.

Kessler BM. 2014. Selective and reversible inhibitors of ubiquitin-specific protease 7: a patent evaluation (WO2013030218). Expert Opin Ther Pat, 24 (5), pp. 597-602. | Citations: 12 (Web of Science Lite) | Show Abstract | Read more

The invention described in this review (WO2013030218) relates to compounds based on the quinazolin-4-one scaffold, their process of preparation and applications to inhibit the ubiquitin-specific protease 7 (USP7), a deubiquitinating enzyme (DUB), which is considered a potentially important new drug target for treating cancer and immunological disorders. Data are presented indicating that these small-molecule compounds are useful as selective and reversible inhibitors of USP7 in vitro and also in a cellular context, although the panel of other enzymes tested was limited. The synthesis strategy allows for the generation of a considerable variety of compounds, although similar properties of selective USP7 inhibition were reported for other related compound classes, thereby increasing the complexity of the patenting process. However, structural patterns that contribute to the selectivity of USP7 and other DUB enzyme inhibition are starting to emerge. Practical implications involve the treatment of cancer, neurodegenerative diseases, immunological disorders, diabetes, bone and joint diseases, cardiovascular diseases and viral and bacterial infections. The quality of these findings and a comparison to other compound classes with similar properties, as well as the potential for further development toward clinical exploitation are discussed.

Liu S, Knapp S, Ahmed AA. 2014. The structural basis of PI3K cancer mutations: from mechanism to therapy. Cancer Res, 74 (3), pp. 641-646. | Citations: 29 (Scopus) | Show Abstract | Read more

While genetic alteration in the p85α-p110α (PI3K) complex represents one of the most frequent driver mutations in cancer, the wild-type complex is also required for driving cancer progression through mutations in related pathways. Understanding the mechanistic basis of the function of the phosphoinositide 3-kinase (PI3K) is essential for designing optimal therapeutic targeting strategies. Recent structural data of the p85α/p110α complex unraveled key insights into the molecular mechanisms of the activation of the complex and provided plausible explanations for the well-established biochemical data on p85/p110 dimer regulation. A wealth of biochemical and biologic information supported by recent genetic findings provides a strong basis for additional p110-independent function of p85α in the regulation of cell survival. In this article, we review the structural, biochemical, and biologic mechanisms through which p85α regulates the cancer cell life cycle with an emphasis on the recently discovered genetic alterations in cancer. As cancer progression is dependent on multiple biologic processes, targeting key drivers such as the PI3K may be required for efficacious therapy of heterogeneous tumors typically present in patients with late-stage disease.

Selner NG, Luechapanichkul R, Chen X, Neel BG, Zhang Z-Y, Knapp S, Bell CE, Pei D. 2014. Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases. Biochemistry, 53 (2), pp. 397-412. | Citations: 12 (Scopus) | Show Abstract | Read more

The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >10(5)-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >10(5)-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3-18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A cocrystal structure of PTP1B bound with a nephrin pY(1193) peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities, and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.

Chaikuad A, Keates T, Vincke C, Kaufholz M, Zenn M, Zimmermann B, Gutiérrez C, Zhang R-G, Hatzos-Skintges C, Joachimiak A et al. 2014. Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies. Biochem J, 459 (1), pp. 59-69. | Citations: 22 (Scopus) | Show Abstract | Read more

GAK (cyclin G-associated kinase) is a key regulator of clathrin-coated vesicle trafficking and plays a central role during development. Additionally, due to the unusually high plasticity of its catalytic domain, it is a frequent 'off-target' of clinical kinase inhibitors associated with respiratory side effects of these drugs. In the present paper, we determined the crystal structure of the GAK catalytic domain alone and in complex with specific single-chain antibodies (nanobodies). GAK is constitutively active and weakly associates in solution. The GAK apo structure revealed a dimeric inactive state of the catalytic domain mediated by an unusual activation segment interaction. Co-crystallization with the nanobody NbGAK_4 trapped GAK in a dimeric arrangement similar to the one observed in the apo structure, whereas NbGAK_1 captured the activation segment of monomeric GAK in a well-ordered conformation, representing features of the active kinase. The presented structural and biochemical data provide insight into the domain plasticity of GAK and demonstrate the utility of nanobodies to gain insight into conformational changes of dynamic molecules. In addition, we present structural data on the binding mode of ATP mimetic inhibitors and enzyme kinetic data, which will support rational inhibitor design of inhibitors to reduce the off-target effect on GAK.

Glinka T, Alter J, Braunstein I, Tzach L, Wei Sheng C, Geifman S, Edelmann MJ, Kessler BM, Stanhill A. 2014. Signal-peptide-mediated translocation is regulated by a p97-AIRAPL complex. Biochem J, 457 (2), pp. 253-261. | Citations: 10 (Scopus) | Show Abstract | Read more

Protein homoeostasis is a fundamental requirement for all living cells in order to survive in a dynamic surrounding. Proper levels of AIRAPL (arsenite-inducible RNA-associated protein-like protein) (ZFAND2B) are required in order to maintain cellular folding capacity in metazoans, and functional impairment of AIRAPL results in acceleration of aging and protein aggregation. However, the cellular roles of AIRAPL in this process are not known. In the present paper, we report that AIRAPL binds and forms a complex with p97 [VCP (valosin-containing protein)/Cdc48], Ubxd8 (ubiquitin regulatory X domain 8), Npl4-Ufd1, Derlin-1 and Bag6 on the ER (endoplasmic reticulum) membrane. In spite of the fact that AIRAPL complex partners are involved in the ERAD (ER-associated degradation) process, AIRAPL knockdown does not show any impairment in ERAD substrate degradation. However, translocation into the ER of a subset of ERAD- and non-ERAD-secreted proteins are regulated by AIRAPL. The ability to regulate translocation by the p97-AIRAPL complex is entirely dependent on the proteins' signal peptide. Our results demonstrate a p97 complex regulating translocation into the ER in a signal-peptide-dependent manner.

Yue WW, Froese DS, Brennan PE. 2014. The role of protein structural analysis in the next generation sequencing era Topics in Current Chemistry, 336 pp. 67-98. | Citations: 7 (Scopus) | Show Abstract | Read more

Proteins are macromolecules that serve a cell's myriad processes and functions in all living organisms via dynamic interactions with other proteins, small molecules and cellular components. Genetic variations in the protein-encoding regions of the human genome account for >85% of all known Mendelian diseases, and play an influential role in shaping complex polygenic diseases. Proteins also serve as the predominant target class for the design of small molecule drugs to modulate their activity. Knowledge of the shape and form of proteins, by means of their three-dimensional structures, is therefore instrumental to understanding their roles in disease and their potentials for drug development. In this chapter we outline, with the wide readership of non-structural biologists in mind, the various experimental and computational methods available for protein structure determination. We summarize how the wealth of structure information, contributed to a large extent by the technological advances in structure determination to date, serves as a useful tool to decipher the molecular basis of genetic variations for disease characterization and diagnosis, particularly in the emerging era of genomic medicine, and becomes an integral component in the modern day approach towards rational drug development. © Springer-Verlag Berlin Heidelberg 2012.

Hammitzsch A, de Wit J, Ridley A, Al-Mossawi MH, Knapp S, Bowness P. 2014. BROMODOMAIN INHIBITORS REDUCE TH17-TYPE RESPONSES IN SPONDYLOARTHRITIS IN VITRO CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 32 (5), pp. 810-810.

Costa L, Casimiro S, Gupta S, Knapp S, Pillai MR, Toi M, Badwe R, Carmo-Fonseca M, Kumar R. 2014. The global cancer genomics consortium’s third annual symposium: From oncogenomics to cancer care Genes and Cancer, 5 (3-4), pp. 64-70. | Citations: 1 (Scopus) | Show Abstract

© 2014, Impact Journals LLC. All Rights Reserved. The Global Cancer Genomics Consortium (GCGC) is a cohesive network of oncologists, cancer biologists and structural and genomic experts residing in six institutions from Portugal, United Kingdom, Japan, India, and United States. The team is using its combined resources and infrastructures to address carefully selected, shared, burning questions in cancer medicine. The Third Annual Symposium was organized by the Institute of Molecular Medicine, Lisbon Medical School, Lisbon, Portugal, from September 18 to 20, 2013. To highlight the benefits and limitations of recent advances in cancer genomics, the meeting focused on how to better translate our gains in oncogenomics to cancer patients while engaging our younger colleagues in cancer medicine at-large. Over two hundreds participants actively discussed some of the most recent advances in the areas cancer genomics, transcriptomics and cancer system biology and how to best apply such knowledge to cancer therapeutics, biomarkers discovery and drug development, and an essential role played by bio-banking throughout the process. In brief, the GCGC symposium provided a platform for students and translational cancer researchers to share their excitement and worries as we are beginning to translate the gains in oncogenomics to a better cancer patient treatment

Ratcliffe PJ. 2014. Oncogenic switching of hypoxia signalling pathways. Cancer & metabolism, 2 (Suppl 1), pp. O8-O8. | Read more

Choudhry H, Schodel J, Albukhari A, Oikonomopoulos S, Haider S, Moralli D, Camps C, Buffa F, Ratcliffe P, Ragousis I et al. 2014. Unlocking the complexity of hypoxia non-coding transcriptome landscape of breast cancer. BMC genomics, 15 (Suppl 2), pp. O17-O17. | Read more

Chen C, Ha BH, Thévenin AF, Lou HJ, Zhang R, Yip KY, Peterson JR, Gerstein M, Kim PM, Filippakopoulos P et al. 2014. Identification of a major determinant for serine-threonine kinase phosphoacceptor specificity. Mol Cell, 53 (1), pp. 140-147. | Citations: 36 (Web of Science Lite) | Show Abstract | Read more

Eukaryotic protein kinases are generally classified as being either tyrosine or serine-threonine specific. Though not evident from inspection of their primary sequences, many serine-threonine kinases display a significant preference for serine or threonine as the phosphoacceptor residue. Here we show that a residue located in the kinase activation segment, which we term the "DFG+1" residue, acts as a major determinant for serine-threonine phosphorylation site specificity. Mutation of this residue was sufficient to switch the phosphorylation site preference for multiple kinases, including the serine-specific kinase PAK4 and the threonine-specific kinase MST4. Kinetic analysis of peptide substrate phosphorylation and crystal structures of PAK4-peptide complexes suggested that phosphoacceptor residue preference is not mediated by stronger binding of the favored substrate. Rather, favored kinase-phosphoacceptor combinations likely promote a conformation optimal for catalysis. Understanding the rules governing kinase phosphoacceptor preference allows kinases to be classified as serine or threonine specific based on their sequence.

Choudhry H, Schödel J, Oikonomopoulos S, Camps C, Grampp S, Harris AL, Ratcliffe PJ, Ragoussis J, Mole DR. 2014. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep, 15 (1), pp. 70-76. | Citations: 63 (Web of Science Lite) | Show Abstract | Read more

Hypoxia is central to both ischaemic and neoplastic diseases. However, the non-coding transcriptional response to hypoxia is largely uncharacterized. We undertook integrated genomic analyses of both non-coding and coding transcripts using massively parallel sequencing and interfaced this data with pan-genomic analyses of hypoxia-inducible factor (HIF) and RNApol2 binding in hypoxic cells. These analyses revealed that all classes of RNA are profoundly regulated by hypoxia and implicated HIF as a major direct regulator of both the non-coding and coding transcriptome, acting predominantly through release of pre-bound promoter-paused RNApol2. These findings indicate that the transcriptional response to hypoxia is substantially more extensive than previously considered.

Fedorov O, Lingard H, Wells C, Monteiro OP, Picaud S, Keates T, Yapp C, Philpott M, Martin SJ, Felletar I et al. 2014. [1,2,4]triazolo[4,3-a]phthalazines: inhibitors of diverse bromodomains. J Med Chem, 57 (2), pp. 462-476. | Citations: 52 (Scopus) | Show Abstract | Read more

Bromodomains are gaining increasing interest as drug targets. Commercially sourced and de novo synthesized substituted [1,2,4]triazolo[4,3-a]phthalazines are potent inhibitors of both the BET bromodomains such as BRD4 as well as bromodomains outside the BET family such as BRD9, CECR2, and CREBBP. This new series of compounds is the first example of submicromolar inhibitors of bromodomains outside the BET subfamily. Representative compounds are active in cells exhibiting potent cellular inhibition activity in a FRAP model of CREBBP and chromatin association. The compounds described are valuable starting points for discovery of selective bromodomain inhibitors and inhibitors with mixed bromodomain pharmacology.

van Ameijde J, Overvoorde J, Knapp S, den Hertog J, Ruijtenbeek R, Liskamp RMJ. 2014. A versatile spectrophotometric protein tyrosine phosphatase assay based on 3-nitrophosphotyrosine containing substrates. Anal Biochem, 448 (1), pp. 9-13. | Citations: 6 (Scopus) | Show Abstract | Read more

A versatile assay for protein tyrosine phosphatases (PTP) employing 3-nitrophosphotyrosine containing peptidic substrates is described. These therapeutically important phosphatases feature in signal transduction pathways. The assay involves spectrophotometric detection of 3-nitrotyrosine production from 3-nitrophosphotyrosine containing peptidic substrates, which are accepted by many PTPs. Compared to conventional chromogenic phosphate derivatives, the more realistic peptidic substrates allow evaluating substrate specificity. The assay's applicability is demonstrated by determining kinetic parameters for several PTP-substrate combinations and inhibitor evaluation, as well as detection of PTP activity in lysates. The convenient new assay may assist further adoption of PTPs in drug development.

Chen L, Fischer R, Peng Y, Reeves E, McHugh K, Ternette N, Hanke T, Dong T, Elliott T, Shastri N et al. 2014. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis Rheumatol, 66 (2), pp. 284-294. | Citations: 43 (Scopus) | Show Abstract | Read more

OBJECTIVE: HLA-B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are the two strongest genetic factors predisposing to ankylosing spondylitis (AS). A key aminopeptidase in class I major histocompatibility complex presentation, ERAP1 potentially contributes to the pathogenesis of AS by altering HLA-B27 peptide presentation. The aim of this study was to analyze the effects of ERAP1 on the HLA-B27 peptide repertoire and peptide presentation to cytotoxic T lymphocytes (CTLs). METHODS: ERAP1-silenced and -competent HeLa.B27 and C1R.B27 cells were isotope-labeled, mixed, lysed, and then immunoprecipitated using W6/32 or ME1 antibodies. Peptides bound to HLA-B27 were eluted and analyzed by tandem mass spectrometry. Selected peptides were synthesized and tested for HLA-B27 binding ability. The effect of ERAP1 silencing/mutation on presentation of an immunodominant viral HLA-B27 epitope, KK10, to CTLs was also studied. RESULTS: In both HeLa.B27 and C1R.B27 cells, the proportion of 9-mer HLA-B27-bound peptides was decreased by ERAP1 silencing, whereas the percentages of longer peptides (11-13 mer) were increased. Surprisingly, following ERAP1 silencing, C-terminally extended peptides were readily identified. These were better able to bind to HLA-B27 than were N-terminally extended peptides lacking an arginine at position 2. In both HeLa.B27 cells and mouse fibroblasts expressing HLA-B27, the absence of ERAP1 reduced peptide recognition by HLA-B27-restricted KK10-specific CTLs following infection with recombinant vaccinia virus or transfection with minigenes expressing KK10 precursors. Presence of an AS-protective variant of ERAP1, K528R, as compared to wild-type ERAP1, reduced the peptide recognition by KK10 CTLs following transfection with extended KK10 minigenes. CONCLUSION: These results show that ERAP1 directly alters peptide binding and presentation by HLA-B27, thus demonstrating a potential pathogenic mechanism in AS. Inhibition of ERAP1 could potentially be used for treatment of AS and other ERAP1-associated diseases.

Petousi N, Croft QPP, Cavalleri GL, Cheng H-Y, Formenti F, Ishida K, Lunn D, McCormack M, Shianna KV, Talbot NP et al. 2014. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. J Appl Physiol (1985), 116 (7), pp. 893-904. | Citations: 47 (Scopus) | Show Abstract | Read more

Tibetan natives have lived on the Tibetan plateau (altitude ∼ 4,000 m) for at least 25,000 years, and as such they are adapted to life and reproduction in a hypoxic environment. Recent studies have identified two genetic loci, EGLN1 and EPAS1, that have undergone natural selection in Tibetans, and further demonstrated an association of EGLN1/EPAS1 genotype with hemoglobin concentration. Both genes encode major components of the hypoxia-inducible factor (HIF) transcriptional pathway, which coordinates an organism's response to hypoxia. Patients living at sea level with genetic disease of the HIF pathway have characteristic phenotypes at both the integrative-physiology and cellular level. We sought to test the hypothesis that natural selection to hypoxia within Tibetans results in related phenotypic differences. We compared Tibetans living at sea level with Han Chinese, who are Tibetans' most closely related major ethnic group. We found that Tibetans had a lower hemoglobin concentration, a higher pulmonary ventilation relative to metabolism, and blunted pulmonary vascular responses to both acute (minutes) and sustained (8 h) hypoxia. At the cellular level, the relative expression and hypoxic induction of HIF-regulated genes were significantly lower in peripheral blood lymphocytes from Tibetans compared with Han Chinese. Within the Tibetans, we found a significant correlation between both EPAS1 and EGLN1 genotype and the induction of erythropoietin by hypoxia. In conclusion, this study provides further evidence that Tibetans respond less vigorously to hypoxic challenge. This is evident at sea level and, at least in part, appears to arise from a hyporesponsive HIF transcriptional system.

Yue WW, Froese DS, Brennan PE. 2014. The role of protein structural analysis in the next generation sequencing era. Top Curr Chem, 336 pp. 67-98. | Citations: 6 (Web of Science Lite) | Show Abstract | Read more

Proteins are macromolecules that serve a cell's myriad processes and functions in all living organisms via dynamic interactions with other proteins, small molecules and cellular components. Genetic variations in the protein-encoding regions of the human genome account for >85% of all known Mendelian diseases, and play an influential role in shaping complex polygenic diseases. Proteins also serve as the predominant target class for the design of small molecule drugs to modulate their activity. Knowledge of the shape and form of proteins, by means of their three-dimensional structures, is therefore instrumental to understanding their roles in disease and their potentials for drug development. In this chapter we outline, with the wide readership of non-structural biologists in mind, the various experimental and computational methods available for protein structure determination. We summarize how the wealth of structure information, contributed to a large extent by the technological advances in structure determination to date, serves as a useful tool to decipher the molecular basis of genetic variations for disease characterization and diagnosis, particularly in the emerging era of genomic medicine, and becomes an integral component in the modern day approach towards rational drug development.

Total publications on this page: 73

Total citations for publications on this page: 3249