Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2020 IEEE. The study of protein transport in living cell requires automated techniques to capture and quantify dynamics of the protein packaged into secretory vesicles. The movement of the vesicles is not consistent along the trajectory, therefore the quantitative study of their dynamics requires trajectories segmentation. This paper explores quantification of such vesicle dynamics and introduces a novel 1D U-Net based trajectory segmentation. Unlike existing mean squared displacement based methods, our proposed framework is not restricted under the requirement of long trajectories for effective segmentation. Moreover, as our approach provides segmentation within each sliding window, it enables effectively capture even short segments. The approach is quantified by the data acquired from spinning disk microscopy imaging of protein trafficking in Drosophila epithelial cells. The extracted trajectories have lengths ranging from 5 (short tracks) to 135 (long tracks) points. The proposed approach achieves 77.7% accuracy for the trajectory segmentation.

Original publication

DOI

10.1109/ISBI45749.2020.9098426

Type

Conference paper

Publication Date

01/04/2020

Volume

2020-April

Pages

891 - 894