A RUNX3 enhancer polymorphism associated with ankylosing spondylitis influences recruitment of Interferon Regulatory Factor 5 and factors of the Nucleosome Remodelling Deacetylase Complex in CD8+ T-cells
Vecellio M., Cortes A., Bonham S., Selmi C., Knight JC., Fischer R., Brown MA., Wordsworth BP., Cohen CJ.
ABSTRACTObjectivesTo investigate the functional consequences of the single nucleotide polymorphism rs4648889 in a putative enhancer upstream of the RUNX3 promoter strongly associated with ankylosing spondylitis (AS).MethodsThe effects of rs4648889 on transcription factor (TF) binding were tested by DNA pull-down and quantitative mass spectrometry. The results were validated by electrophoretic mobility gel shift assays (EMSA), Western blot (WB) analysis of the pulled-down eluates, and chromatin immuno-precipitation (ChIP)-qPCR.ResultsSeveral TFs showed differential allelic binding to a 50bp DNA probe spanning rs4648889. Binding was increased to the AS-risk A allele for IKZF3 (aiolos) in nuclear extracts from CD8+ T-cells (3.7-fold, p<0.03) and several components of the NUcleosome Remodeling Deacetylase (NuRD) complex, including Chromodomain-Helicase-DNA-binding protein 4 (3.6-fold, p<0.05) and Retinoblastoma-Binding Protein 4 (4.1-fold, p<0.02). In contrast, binding of interferon regulatory factor (IRF) 5 was increased to the AS-protective G allele. These results were confirmed by EMSA, WB and ChIP-qPCR.ConclusionsThe association of AS with rs4648889 most likely results from its influence on the binding of this enhancer-like region to TFs, including IRF5, IKZF3 and members of the NuRD complex. Further investigation of these factors and RUNX3-related pathways may reveal important new therapeutic possibilities in AS.