Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The catalytic efficacy of silver nanoparticles was investigated toward the chemoselective reduction of nitro-tetrazole or amino acid-substituted derivatives into the corresponding amines in high isolated yields. This highly efficient protocol was thereafter applied toward the multicomponent reaction synthesis of heterocyclic dihydroquinoxalin-2-ones with high isolated yields. The reaction proceeds with low catalyst loading (0.8-1.4 mol %) and under mild catalytic conditions, a very good functional-group tolerance, and high yields and can be easily scaled up to more than 1 mmol of product. Thus, the present catalytic methodology highlights a useful synthetic application. Different molecules are designed and accordingly synthesized with the current protocol that could play the role of inhibitors of the soluble epoxide hydrolase, an important target for therapies against hypertension or inflammation.

Original publication

DOI

10.1021/acsomega.8b02749

Type

Journal article

Journal

ACS Omega

Publication Date

27/11/2018

Volume

3

Pages

16005 - 16013