Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Post-translational hydroxylation has been considered an unusual modification on intracellular proteins. However, following the recognition that oxygen-sensitive prolyl and asparaginyl hydroxylation are central to the regulation of the transcription factor hypoxia-inducible factor (HIF), interest has centered on the possibility that these enzymes may have other substrates in the proteome. In support of this certain ankyrin repeat domain (ARD)-containing proteins, including members of the IkappaB and Notch families, have been identified as alternative substrates of the HIF asparaginyl hydroxylase factor inhibiting HIF (FIH). Although these findings imply a potentially broad range of substrates for FIH, the precise extent of this range has been difficult to determine because of the difficulty of capturing transient enzyme-substrate interactions. Here we describe the use of pharmacological "substrate trapping" together with stable isotope labeling by amino acids in cell culture (SILAC) technology to stabilize and identify potential FIH-substrate interactions by mass spectrometry. To pursue these potential FIH substrates we used conventional data-directed tandem MS together with alternating low/high collision energy tandem MS to assign and quantitate hydroxylation at target asparaginyl residues. Overall the work has defined 13 new FIH-dependent hydroxylation sites with a degenerate consensus corresponding to that of the ankyrin repeat and a range of ARD-containing proteins as actual and potential substrates for FIH. Several ARD-containing proteins were multiply hydroxylated, and detailed studies of one, Tankyrase-2, revealed eight sites that were differentially sensitive to FIH-catalyzed hydroxylation. These findings indicate that asparaginyl hydroxylation is likely to be widespread among the approximately 300 ARD-containing species in the human proteome.

Original publication

DOI

10.1074/mcp.M800340-MCP200

Type

Journal article

Journal

Mol Cell Proteomics

Publication Date

03/2009

Volume

8

Pages

535 - 546

Keywords

Amino Acid Sequence, Amino Acids, Dicarboxylic, Ankyrin Repeat, Asparagine, Cell Line, Tumor, Endoribonucleases, Humans, Hydroxylation, Immunoblotting, Mass Spectrometry, Mixed Function Oxygenases, Molecular Sequence Data, Protein Binding, Proteomics, Repressor Proteins, Reproducibility of Results, Substrate Specificity, Tankyrases