Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In mammalian systems, the heterodimeric basic helix-loop-helix (bHLH)-PAS transcription hypoxia-inducible factor (HIF) has emerged as the key regulator of responses to hypoxia. Here we define a homologous system in Drosophila melanogaster, and we characterize its activity in vivo during development. By using transcriptional reporters in developing transgenic flies, we show that hypoxia-inducible activity rises to a peak in late embryogenesis and is most pronounced in tracheal cells. We show that the bHLH-PAS proteins Similar (Sima) and Tango (Tgo) function as HIF-alpha and HIF-beta homologues, respectively, and demonstrate a conserved mode of regulation for Sima by oxygen. Sima protein, but not its mRNA, was upregulated in hypoxia. Time course experiments following pulsed ectopic expression demonstrated that Sima is stabilized in hypoxia and that degradation relies on a central domain encompassing amino acids 692 to 863. Continuous ectopic expression overrode Sima degradation, which remained cytoplasmic in normoxia, and translocated to the nucleus only in hypoxia, revealing a second oxygen-regulated activation step. Abrogation of the Drosophila Egl-9 prolyl hydroxylase homologue, CG1114, caused both stabilization and nuclear localization of Sima, indicating a central involvement in both processes. Tight conservation of the HIF/prolyl hydroxylase system in Drosophila provides a new focus for understanding oxygen homeostasis in intact multicellular organisms.

Type

Journal article

Journal

Mol Cell Biol

Publication Date

10/2002

Volume

22

Pages

6842 - 6853

Keywords

Active Transport, Cell Nucleus, Animals, Animals, Genetically Modified, Aryl Hydrocarbon Receptor Nuclear Translocator, Blotting, Western, Carrier Proteins, Cell Nucleus, Cytoplasm, DNA-Binding Proteins, Drosophila Proteins, Drosophila melanogaster, Embryo, Nonmammalian, Genes, Reporter, Helix-Loop-Helix Motifs, Hypoxia, Oxygen, RNA, Messenger, Transcription Factors, Transcription, Genetic