Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Un-physiological activation of hypoxia inducible factor (HIF) is an early event in most renal cell cancers (RCC) following inactivation of the von Hippel-Lindau tumor suppressor. Despite intense study, how this impinges on cancer development is incompletely understood. To test for the impact of genetic signals on this pathway, we aligned human RCC-susceptibility polymorphisms with genome-wide assays of HIF-binding and observed highly significant overlap. Allele-specific assays of HIF binding, chromatin conformation and gene expression together with eQTL analyses in human tumors were applied to mechanistic analysis of one such overlapping site at chromosome 12p12.1. This defined a novel stage-specific mechanism in which the risk polymorphism, rs12814794, directly creates a new HIF-binding site that mediates HIF-1α isoform specific upregulation of its target BHLHE41. The alignment of multiple sites in the HIF cis-acting apparatus with RCC-susceptibility polymorphisms strongly supports a causal model in which minor variation in this pathway exerts significant effects on RCC development.

Original publication

DOI

10.1371/journal.pgen.1006872

Type

Journal article

Journal

PLoS Genet

Publication Date

17/07/2017

Volume

13

Pages

e1006872 - e1006872