Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nitric Oxide (NO) is an intracellular signalling mediator, which affects many biological processes via the posttranslational modification of proteins through S-nitrosation. The availability of NO and NOS-derived reactive oxygen species (ROS) from enzymatic uncoupling are determined by the NO synthase cofactor Tetrahydrobiopterin (BH4). Here, using a global proteomics “biotin-switch” approach, we identified components of the ubiquitin-proteasome system to be altered via BH4-dependent NO signalling by protein S-nitrosation. We show S-nitrosation of ubiquitin conjugating E2 enzymes, in particular the catalytic residue C87 of UBC13/UBE2N, leading to impaired polyubiquitylation by interfering with the formation of UBC13~Ub thioester intermediates. In addition, proteasome cleavage activity in cells also seems to be altered by S-nitrosation, correlating with the modification of cysteine residues within the 19S regulatory particle and catalytic subunits of the 20S complex. Our results highlight the widespread impact of BH4 on downstream cellular signalling as evidenced by the effect of a perturbed BH4-dependent NO-Redox balance on critical processes within the ubiquitin-proteasome system (UPS). These studies thereby uncover a novel aspect of NO associated modulation of cellular homeostasis.

Type

Journal article

Journal

Scientific Reports

Publisher

Nature Publishing Group